
Rocky Enterprise Linux 9.2 Manual Pages on command 'sg3_utils.8'

$ man sg3_utils.8

SG3_UTILS(8) SG3_UTILS SG3_UTILS(8)

NAME

 sg3_utils - a package of utilities for sending SCSI commands

SYNOPSIS

 sg_* [--dry-run] [--enumerate] [--help] [--hex] [--in=FN] [--inhex=FN]

 [--maxlen=LEN] [--raw] [--timeout=SECS] [--verbose] [--version]

 [OTHER_OPTIONS] DEVICE

DESCRIPTION

 sg3_utils is a package of utilities that send SCSI commands to the

 given DEVICE via a SCSI pass through interface provided by the host op?

 erating system.

 The names of all utilities start with "sg" and most start with "sg_"

 often followed by the name, or a shortening of the name, of the SCSI

 command that they send. For example the "sg_verify" utility sends the

 SCSI VERIFY command. A mapping between SCSI commands and the sg3_utils

 utilities that issue them is shown in the COVERAGE file. The sg_raw

 utility can be used to send an arbitrary SCSI command (supplied on the

 command line) to the given DEVICE. Page 1/21

 sg_decode_sense can be used to decode SCSI sense data given on the com?

 mand line or in a file. sg_raw -vvv will output the T10 name of a given

 SCSI CDB which is most often 16 bytes or less in length.

 SCSI draft standards can be found at https://www.t10.org . The stan?

 dards themselves can be purchased from ANSI and other standards organi?

 zations. A good overview of various SCSI standards can be seen in

 https://www.t10.org/scsi-3.htm with the SCSI command sets in the upper

 part of the diagram. The highest level (i.e. most abstract) document is

 the SCSI Architecture Model (SAM) with SAM-5 being the most recent

 standard (ANSI INCITS 515-2016) with the most recent draft being SAM-6

 revision 4 . SCSI commands in common with all device types can be found

 in SCSI Primary Commands (SPC) of which SPC-4 is the most recent stan?

 dard (ANSI INCITS 513-2015). The most recent SPC draft is SPC-5 revi?

 sion 21. Block device specific commands (e.g. as used by disks) are in

 SBC, those for tape drives in SSC, those for SCSI enclosures in SES and

 those for CD/DVD/BD drives in MMC.

 It is becoming more common to control ATA disks with the SCSI command

 set. This involves the translation of SCSI commands to their corre?

 sponding ATA equivalents (and that is an imperfect mapping in some

 cases). The relevant standard is called SCSI to ATA Translation (SAT,

 SAT-2 and SAT-3) are now standards at INCITS(ANSI) and ISO while SAT-4

 is at the draft stage. The logic to perform the command translation is

 often called a SAT Layer or SATL and may be within an operating system,

 in host bus adapter firmware or in an external device (e.g. associated

 with a SAS expander). See https://www.t10.org for more information.

 There is some support for SCSI tape devices but not for their basic op?

 eration. The reader is referred to the "mt" utility.

 There are two generations of command line option usage. The newer util?

 ities (written since July 2004) use the getopt_long() function to parse

 command line options. With that function, each option has two represen?

 tations: a short form (e.g. '-v') and a longer form (e.g. '--verbose').

 If an argument is required then it follows a space (optionally) in the

 short form and a "=" in the longer form (e.g. in the sg_verify utility Page 2/21

 '-l 2a6h' and '--lba=2a6h' are equivalent). Note that with

 getopt_long(), short form options can be elided, for example: '-all' is

 equivalent to '-a -l -l'. The DEVICE argument may appear after, be?

 tween or prior to any options.

 The older utilities, including as sg_inq, sg_logs, sg_modes, sg_opcode,

 sg_rbuff, sg_readcap, sg_senddiag, sg_start and sg_turs had individual

 command line processing code typically based on a single "-" followed

 by one or more characters. If an argument is needed then it follows a

 "=" (e.g. '-p=1f' in sg_modes with its older interface). Various op?

 tions can be elided as long as it is not ambiguous (e.g. '-vv' to in?

 crease the verbosity).

 Over time the command line interface of these older utilities became

 messy and overloaded with options. So in sg3_utils version 1.23 the

 command line interface of these older utilities was altered to have

 both a cleaner getopt_long() interface and their older interface for

 backward compatibility. By default these older utilities use their

 getopt_long() based interface. The getopt_long() is a GNU extension

 (i.e. not yet POSIX certified) but more recent command line utilities

 tend to use it. That can be overridden by defining the

 SG3_UTILS_OLD_OPTS environment variable or using '-O' or '--old' as the

 first command line option. The man pages of the older utilities docu?

 ments the details.

 Several sg3_utils utilities are based on the Unix dd command (e.g.

 sg_dd) and permit copying data at the level of SCSI READ and WRITE com?

 mands. sg_dd is tightly bound to Linux and hence is not ported to other

 OSes. A more generic utility (than sg_dd) called ddpt in a package of

 the same name has been ported to other OSes.

ENVIRONMENT VARIABLES

 The SG3_UTILS_OLD_OPTS environment variable is explained in the previ?

 ous section. It is only for backward compatibility of the command line

 options for older utilities.

 The SG3_UTILS_DSENSE environment variable may be set to a number. It is

 only used by the embedded SNTL within the library used by the utilities Page 3/21

 in this library. SNTL is a SCSI to NVMe Translation Layer. This envi?

 ronment variable defaults to 0 which will lead to any utility that is?

 sues a SCSI command that is translated to a NVMe command (by the embed?

 ded SNTL) that fails at the NVMe dvice, to return SCSI sense in 'fixed'

 format. If this variable is non-zero then then the returned SCSI sense

 will be in 'descriptor' format.

 Several utilities have their own environment variable setting (e.g.

 sg_persist has SG_PERSIST_IN_RDONLY). See individual utility man pages

 for more information.

 There is a Linux specific environment variable called

 SG3_UTILS_LINUX_NANO that if defined and the sg driver in the system is

 4.0.30 or later, will show command durations in nanoseconds rather than

 the default milliseconds. Command durations are typically only shown

 if --verbose is used 3 or more times. Due to an interface problem (a 32

 bit integer that should be 64 bits with the benefit of hindsight) the

 maximum duration that can be represented in nanoseconds is about 4.2

 seconds. If longer durations may occur then don't define this environ?

 ment variable (or undefine it).

LINUX DEVICE NAMING

 Most disk block devices have names like /dev/sda, /dev/sdb, /dev/sdc,

 etc. SCSI disks in Linux have always had names like that but in recent

 Linux kernels it has become more common for many other disks (including

 SATA disks and USB storage devices) to be named like that. Partitions

 within a disk are specified by a number appended to the device name,

 starting at 1 (e.g. /dev/sda1).

 Tape drives are named /dev/st<num> or /dev/nst<num> where <num> starts

 at zero. Additionally one letter from this list: "lma" may be appended

 to the name. CD, DVD and BD readers (and writers) are named

 /dev/sr<num> where <num> start at zero. There are less used SCSI device

 type names, the dmesg and the lsscsi commands may help to find if any

 are attached to a running system.

 There is also a SCSI device driver which offers alternate generic ac?

 cess to SCSI devices. It uses names of the form /dev/sg<num> where Page 4/21

 <num> starts at zero. The "lsscsi -g" command may be useful in finding

 these and which generic name corresponds to a device type name (e.g.

 /dev/sg2 may correspond to /dev/sda). In the lk 2.6 series a block SCSI

 generic driver was introduced and its names are of the form

 /dev/bsg/<h:c:t:l> where h, c, t and l are numbers. Again see the lss?

 csi command to find the correspondence between that SCSI tuple (i.e.

 <h:c:t:l>) and alternate device names.

 Prior to the Linux kernel 2.6 series these utilities could only use

 generic device names (e.g. /dev/sg1). In almost all cases in the Linux

 kernel 2.6 series, any device name can be used by these utilities.

 Very little has changed in Linux device naming in the Linux kernel 3

 and 4 series.

WINDOWS DEVICE NAMING

 Storage and related devices can have several device names in Windows.

 Probably the most common in the volume name (e.g. "D:"). There are also

 a "class" device names such as "PhysicalDrive<n>", "CDROM<n>" and

 "TAPE<n>". <n> is an integer starting at 0 allocated in ascending order

 as devices are discovered (and sometimes rediscovered).

 Some storage devices have a SCSI lower level device name which starts

 with a SCSI (pseudo) adapter name of the form "SCSI<n>:". To this is

 added sub-addressing in the form of a "bus" number, a "target" identi?

 fier and a LUN (Logical Unit Number). The "bus" number is also known as

 a "PathId". These are assembled to form a device name of the form:

 "SCSI<n>:<bus>,<target>,<lun>". The trailing ",<lun>" may be omitted in

 which case a LUN of zero is assumed. This lower level device name can?

 not often be used directly since Windows blocks attempts to use it if a

 class driver has "claimed" the device. There are SCSI device types

 (e.g. Automation/Drive interface type) for which there is no class

 driver. At least two transports ("bus types" in Windows jargon): USB

 and IEEE 1394 do not have a "scsi" device names of this form.

 In keeping with DOS file system conventions, the various device names

 can be given in upper, lower or mixed case. Since "PhysicalDrive<n>" is

 tedious to write, a shortened form of "PD<n>" is permitted by all util? Page 5/21

 ities in this package.

 A single device (e.g. a disk) can have many device names. For example:

 "PD0" can also be "C:", "D:" and "SCSI0:0,1,0". The two volume names

 reflect that the disk has two partitions on it. Disk partitions that

 are not recognized by Windows are not usually given a volume name. How?

 ever Vista does show a volume name for a disk which has no partitions

 recognized by it and when selected invites the user to format it (which

 may be rather unfriendly to other OSes).

 These utilities assume a given device name is in the Win32 device name?

 space. To make that explicit "\\.\" can be prepended to the device

 names mentioned in this section. Beware that backslash is an escape

 character in Unix like shells and the C programming language. In a

 shell like Msys (from MinGW) each backslash may need to be typed twice.

 The sg_scan utility within this package lists out Windows device names

 in a form that is suitable for other utilities in this package to use.

FREEBSD DEVICE NAMING

 SCSI disks have block names of the form /dev/da<num> where <num> is an

 integer starting at zero. The "da" is replaced by "sa" for SCSI tape

 drives and "cd" for SCSI CD/DVD/BD drives. Each SCSI device has a cor?

 responding pass-through device name of the form /dev/pass<num> where

 <num> is an integer starting at zero. The "camcontrol devlist" command

 may be useful for finding out which SCSI device names are available and

 the correspondence between class and pass-through names.

 FreeBSD allows device names to be given without the leading "/dev/"

 (e.g. da0 instead of /dev/da0). That worked in this package up until

 version 1.43 when the unadorned device name (e.g. "da0") gave an error.

 The original action (i.e. allowing unadorned device names) has been re?

 stored in version 1.46 . Also note that symlinks (to device names) are

 followed before prepending "/dev/" if the resultant name doesn't start

 with a "/".

 FreeBSD's NVMe naming has been evolving. The controller naming is the

 same as Linux: "/dev/nvme<n>" but the namespaces have an extra "s"

 (e.g. "/dev/nvme0ns1"). The latter is not a block (GEOM) device Page 6/21

 (strictly speaking FreeBSD does not have block devices). Initially

 FreeBSD had "/dev/nvd<m>" GEOM devices that were not based on the CAM

 subsystem. Then in FreeBSD release 12 a new nda driver was added that

 is CAM (and GEOM) based for NVMe namespaces; it has names like

 "/dev/nda0". The preferred device nodes for this package are

 "/dev/nvme0" for NVMe controllers and "/dev/nda0" for NVMe namespaces.

SOLARIS DEVICE NAMING

 SCSI device names below the /dev directory have a form like: c5t4d3s2

 where the number following "c" is the controller (HBA) number, the num?

 ber following "t" is the target number (from the SCSI parallel inter?

 face days) and the number following "d" is the LUN. Following the "s"

 is the slice number which is related to a partition and by convention

 "s2" is the whole disk.

 OpenSolaris also has a c5t4d3p2 form where the number following the "p"

 is the partition number apart from "p0" which is the whole disk. So a

 whole disk may be referred to as either c5t4d3, c5t4d3s2 or c5t4d3p0 .

 And these device names are duplicated in the /dev/dsk and /dev/rdsk di?

 rectories. The former is the block device name and the latter is for

 "raw" (or char device) access which is what sg3_utils needs. So in

 OpenSolaris something of the form 'sg_inq /dev/rdsk/c5t4d3p0' should

 work. If it doesn't work then add a '-vvv' option for more debug in?

 formation. Trying this form 'sg_inq /dev/dsk/c5t4d3p0' (note "rdsk"

 changed to "dsk") will result in an "inappropriate ioctl for device"

 error.

 The device names within the /dev directory are typically symbolic links

 to much longer topological names in the /device directory. In Solaris

 cd/dvd/bd drives seem to be treated as disks and so are found in the

 /dev/rdsk directory. Tape drives appear in the /dev/rmt directory.

 There is also a sgen (SCSI generic) driver which by default does not

 attach to any device. See the /kernel/drv/sgen.conf file to control

 what is attached. Any attached device will have a device name of the

 form /dev/scsi/c5t4d3 .

 Listing available SCSI devices in Solaris seems to be a challenge. "Use Page 7/21

 the 'format' command" advice works but seems a very dangerous way to

 list devices. [It does prompt again before doing any damage.] 'devfsadm

 -Cv' cleans out the clutter in the /dev/rdsk directory, only leaving

 what is "live". The "cfgadm -v" command looks promising.

NVME SUPPORT

 NVMe (or NVM Express) is a relatively new storage transport and command

 set. The level of abstraction of the NVMe command set is somewhat lower

 the SCSI command sets, closer to the level of abstraction of ATA (and

 SATA) command sets. NVMe claims to be designed with flash and modern

 "solid state" storage in mind, something unheard of when SCSI was orig?

 inally developed in the 1980s.

 The SCSI command sets' advantage is the length of time they have been

 in place and the existing tools (like these) to support it. Plus SCSI

 command sets level of abstraction is both and advantage and disadvan?

 tage. Recently the NVME-MI (Management Interface) designers decide to

 use the SCSI Enclosure Services (SES-3) standard "as is" with the addi?

 tion of two tunnelling NVME-MI commands: SES Send and SES Receive. This

 means after the OS interface differences are taken into account, the

 sg_ses, sg_ses_microcode and sg_senddiag utilities can be used on a

 NVMe device that supports a newer version of NVME-MI.

 The NVME-MI SES Send and SES Receive commands correspond to the SCSI

 SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS commands respectively.

 There are however a few other commands that need to be translated, the

 most important of which is the SCSI INQUIRY command to the NVMe Iden?

 tify controller/namespace. Starting in version 1.43 these utilities

 contain a small SNTL (SCSI to NVMe Translation Layer) to take care of

 these details.

 As a side effect of this "juggling" if the sg_inq utility is used

 (without the --page= option) on a NVMe DEVICE then the actual NVMe

 Identifier (controller and possibly namespace) responses are decoded

 and output. However if 'sg_inq --page=sinq <device>' is given for the

 same DEVICE then parts of the NVMe Identify controller and namespace

 response are translated to a SCSI standard INQUIRY response which is Page 8/21

 then decoded and output.

 Apart from the special case with the sg_inq, all other utilities in the

 package assume they are talking to a SCSI device and decode any re?

 sponse accordingly. One easy way for users to see the underlying device

 is a NVMe device is the standard INQUIRY response Vendor Identification

 field of "NVMe " (an 8 character long string with 4 spaces to the

 right).

 The following SCSI commands are currently supported by the SNTL li?

 brary: INQUIRY, MODE SELECT(10), MODE SENSE(10), READ(10,16), READ CA?

 PACITY(10,16), RECEIVE DIAGNOSTIC RESULTS, REQUEST SENSE, REPORT LUNS,

 REPORT SUPPORTED OPERATION CODES, REPORT SUPPORTED TASK MANAGEMENT

 FUNCTIONS, SEND DIAGNOSTICS, START STOP UNIT, SYNCHRONIZE CACHE(10,16),

 TEST UNIT READY, VERIFY(10,16), WRITE(10,16) and WRITE SAME(10,16).

EXIT STATUS

 To aid scripts that call these utilities, the exit status is set to in?

 dicate success (0) or failure (1 or more). Note that some of the lower

 values correspond to the SCSI sense key values.

 The exit status values listed below can be given to the sg_decode_sense

 utility (which is found in this package) as follows:

 sg_decode_sense --err=<exit_status>

 and a short explanatory string will be output to stdout.

 The exit status values are:

 0 success. Also used for some utilities that wish to return a

 boolean value for the "true" case (and that no error has oc?

 curred). The false case is conveyed by exit status 36.

 1 syntax error. Either illegal command line options, options with

 bad arguments or a combination of options that is not permitted.

 2 the DEVICE reports that it is not ready for the operation re?

 quested. The DEVICE may be in the process of becoming ready

 (e.g. spinning up but not at speed) so the utility may work af?

 ter a wait. In Linux the DEVICE may be temporarily blocked while

 error recovery is taking place.

 3 the DEVICE reports a medium or hardware error (or a blank Page 9/21

 check). For example an attempt to read a corrupted block on a

 disk will yield this value.

 5 the DEVICE reports an "illegal request" with an additional sense

 code other than "invalid command operation code". This is often

 a supported command with a field set requesting an unsupported

 capability. For commands that require a "service action" field

 this value can indicate that the command with that service ac?

 tion value is not supported.

 6 the DEVICE reports a "unit attention" condition. This usually

 indicates that something unrelated to the requested command has

 occurred (e.g. a device reset) potentially before the current

 SCSI command was sent. The requested command has not been exe?

 cuted by the device. Note that unit attention conditions are

 usually only reported once by a device.

 7 the DEVICE reports a "data protect" sense key. This implies some

 mechanism has blocked writes (or possibly all access to the me?

 dia).

 9 the DEVICE reports an illegal request with an additional sense

 code of "invalid command operation code" which means that it

 doesn't support the requested command.

 10 the DEVICE reports a "copy aborted". This implies another com?

 mand or device problem has stopped a copy operation. The EX?

 TENDED COPY family of commands (including WRITE USING TOKEN) may

 return this sense key.

 11 the DEVICE reports an aborted command. In some cases aborted

 commands can be retried immediately (e.g. if the transport

 aborted the command due to congestion).

 14 the DEVICE reports a miscompare sense key. VERIFY and COMPARE

 AND WRITE commands may report this.

 15 the utility is unable to open, close or use the given DEVICE or

 some other file. The given file name could be incorrect or there

 may be permission problems. Adding the '-v' option may give more

 information. Page 10/21

 17 a SCSI "Illegal request" sense code received with a flag indi?

 cating the Info field is valid. This is often a LBA but its

 meaning is command specific.

 18 the DEVICE reports a medium or hardware error (or a blank check)

 with a flag indicating the Info field is valid. This is often a

 LBA (of the first encountered error) but its meaning is command

 specific.

 20 the DEVICE reports it has a check condition but "no sense" and

 non-zero information in its additional sense codes. Some polling

 commands (e.g. REQUEST SENSE) can receive this response. There

 may be useful information in the sense data such as a progress

 indication.

 21 the DEVICE reports a "recovered error". The requested command

 was successful. Most likely a utility will report a recovered

 error to stderr and continue, probably leaving the utility with

 an exit status of 0 .

 22 the DEVICE reports that the current command or its parameters

 imply a logical block address (LBA) that is out of range. This

 happens surprisingly often when trying to access the last block

 on a storage device; either a classic "off by one" logic error

 or a misreading of the response from READ CAPACITY(10 or 16) in

 which the address of the last block rather than the number of

 blocks on the DEVICE is returned. Since LBAs are origin zero

 they range from 0 to n-1 where n is the number of blocks on the

 DEVICE, so the LBA of the last block is one less than the total

 number of blocks.

 24 the DEVICE reports a SCSI status of "reservation conflict". This

 means access to the DEVICE with the current command has been

 blocked because another machine (HBA or SCSI "initiator") holds

 a reservation on this DEVICE. On modern SCSI systems this is re?

 lated to the use of the PERSISTENT RESERVATION family of com?

 mands.

 25 the DEVICE reports a SCSI status of "condition met". Currently Page 11/21

 only the PRE-FETCH command (see SBC-4) yields this status.

 26 the DEVICE reports a SCSI status of "busy". SAM-6 defines this

 status as the logical unit is temporarily unable to process a

 command. It is recommended to re-issue the command.

 27 the DEVICE reports a SCSI status of "task set full".

 28 the DEVICE reports a SCSI status of "ACA active". ACA is "auto

 contingent allegiance" and is seldom used.

 29 the DEVICE reports a SCSI status of "task aborted". SAM-5 says:

 "This status shall be returned if a command is aborted by a com?

 mand or task management function on another I_T nexus and the

 Control mode page TAS bit is set to one".

 31 error involving two or more command line options. They may be

 contradicting, select an unsupported mode, or a required option

 (given the context) is missing.

 32 there is a logic error in the utility. It corresponds to code

 comments like "shouldn't/can't get here". Perhaps the author

 should be informed.

 33 the command sent to DEVICE has timed out.

 34 this is a Windows only exit status and indicates that the Win?

 dows error number (32 bits) cannot meaningfully be mapped to an

 equivalent Unix error number returned as the exit status (7

 bits).

 35 a transport error has occurred. This will either be in the

 driver (e.g. HBA driver) or in the interconnect between the host

 (initiator) and the device (target). For example in SAS an ex?

 pander can run out of paths and thus be unable to return the

 user data for a READ command.

 36 no error has occurred plus the utility wants to convey a boolean

 value of false. The corresponding true value is conveyed by a 0

 exit status.

 40 the command sent to DEVICE has received an "aborted command"

 sense key with an additional sense code of 0x10. This value is

 related to problems with protection information (PI or DIF). For Page 12/21

 example this error may occur when reading a block on a drive

 that has never been written (or is unmapped) if that drive was

 formatted with type 1, 2 or 3 protection.

 41 the command sent to DEVICE has received an "aborted command"

 sense key with an additional sense code of 0x10 (as with error

 code) plus a flag indicating the Info field is valid.

 48 this is an internal message indicating a NVMe status field (SF)

 is other than zero after a command has been executed (i.e. some?

 thing went wrong). Work in this area is currently experimental.

 49 low level driver reports a response's residual count (i.e. num?

 ber of bytes actually received by HBA is 'requested_bytes -

 residual_count') that is nonsensical.

 50 OS system calls that fail often return a small integer number to

 help. In Unix these are called "errno" values where 0 implies no

 error. These error codes set aside 51 to 96 for mapping these

 errno values but that may not be sufficient. Higher errno values

 that cannot be mapped are all mapped to this value (i.e. 50).

 Note that an errno value of 0 is mapped to error code 0.

 50 + <os_error_number>

 OS system calls that fail often return a small integer number to

 help indicate what the error is. For example in Unix the inabil?

 ity of a system call to allocate memory returns (in 'errno')

 ENOMEM which often is associated with the integer 12. So 62

 (i.e. '50 + 12') may be returned by a utility in this case. It

 is also possible that a utility in this package reports

 50+ENOMEM when it can't allocate memory, not necessarily from an

 OS system call. In recent versions of Linux the file showing the

 mapping between symbolic constants (e.g. ENOMEM) and the corre?

 sponding integer is in the kernel source code file: in?

 clude/uapi/asm-generic/errno-base.h

 Note that errno values that are greater than or equal to 47 can?

 not fit in range provided. Instead they are all mapped to 50 as

 discussed in the previous entry. Page 13/21

 97 a SCSI command response failed sanity checks.

 98 the DEVICE reports it has a check condition but the error

 doesn't fit into any of the above categories.

 99 any errors that can't be categorized into values 1 to 98 may

 yield this value. This includes transport and operating system

 errors after the command has been sent to the device.

 100-125

 these error codes are used by the ddpt utility which uses the

 sg3_utils library. They are mainly specialized error codes asso?

 ciated with offloaded copies.

 126 the utility was found but could not be executed. That might oc?

 cur if the executable does not have execute permissions.

 127 This is the exit status for utility not found. That might occur

 when a script calls a utility in this package but the PATH envi?

 ronment variable has not been properly set up, so the script

 cannot find the executable.

 128 + <signum>

 If a signal kills a utility then the exit status is 128 plus the

 signal number. For example if a segmentation fault occurs then a

 utility is typically killed by SIGSEGV which according to 'man 7

 signal' has an associated signal number of 11; so the exit sta?

 tus will be 139 .

 255 the utility tried to yield an exit status of 255 or larger. That

 should not happen; given here for completeness.

 Most of the error conditions reported above will be repeatable (an ex?

 ample of one that is not is "unit attention") so the utility can be run

 again with the '-v' option (or several) to obtain more information.

COMMON OPTIONS

 Arguments to long options are mandatory for short options as well. In

 the short form an argument to an option uses zero or more spaces as a

 separator (i.e. the short form does not use "=" as a separator).

 If an option takes a numeric argument then that argument is assumed to

 be decimal unless otherwise indicated (e.g. with a leading "0x", a Page 14/21

 trailing "h" or as noted in the usage message).

 Some options are used uniformly in most of the utilities in this pack?

 age. Those options are listed below. Note that there are some excep?

 tions.

 -d, --dry-run

 utilities that can cause lots of user data to be lost or over?

 written sometimes have a --dry-run option. Device modifying ac?

 tions are typically bypassed (or skipped) to implement a policy

 of "do no harm". This allows complex command line invocations

 to be tested before the action required (e.g. format a disk) is

 performed. The --dry-run option has become a common feature of

 many command line utilities (e.g. the Unix 'patch' command),

 not just those from this package.

 Note that most hyphenated option names in this package also can

 be given with an underscore rather than a hyphen (e.g.

 --dry_run).

 -e, --enumerate

 some utilities (e.g. sg_ses and sg_vpd) store a lot of informa?

 tion in internal tables. This option will output that informa?

 tion in some readable form (e.g. sorted by an acronym or by page

 number) then exit. Note that with this option DEVICE is ignored

 (as are most other options) and no SCSI IO takes place, so the

 invoker does not need any elevated permissions.

 -h, -?, --help

 output the usage message then exit. In a few older utilities the

 '-h' option requests hexadecimal output. In these cases the '-?'

 option will output the usage message then exit.

 -H, --hex

 for SCSI commands that yield a non-trivial response, print out

 that response in ASCII hexadecimal. To produce hexadecimal that

 can be parsed by other utilities (e.g. without a relative ad?

 dress to the left and without trailing ASCII) use this option

 three or four times. Page 15/21

 -i, --in=FN

 many SCSI commands fetch a significant amount of data (returned

 in the data-in buffer) which several of these utilities decode

 (e.g. sg_vpd and sg_logs). To separate the two steps of fetching

 the data from a SCSI device and then decoding it, this option

 has been added. The first step (fetching the data) can be done

 using the --hex or --raw option and redirecting the command line

 output to a file (often done with ">" in Unix based operating

 systems). The difference between --hex and --raw is that the

 former produces output in ASCII hexadecimal while --raw produces

 its output in "raw" binary.

 The second step (i.e. decoding the SCSI response data now held

 in a file) can be done using this --in=FN option where the file

 name is FN. If "-" is used for FN then stdin is assumed, again

 this allows for command line redirection (or piping). That file

 (or stdin) is assumed to contain ASCII hexadecimal unless the

 --raw option is also given in which case it is assumed to be bi?

 nary. Notice that the meaning of the --raw option is "flipped"

 when used with --in=FN to act on the input, typically it acts on

 the output data.

 Since the structure of the data returned by SCSI commands varies

 considerably then the usage information or the manpage of the

 utility being used should be checked. In some cases --hex may

 need to be used multiple times (and is more conveniently given

 as '-HH' or '-HHH).

 -i, --inhex=FN

 This option has the same or similar functionality as --in=FN.

 And perhaps 'inhex' is more descriptive since by default, ASCII

 hexadecimal is expected in the contents of file: FN. Alterna?

 tively the short form option may be -I or -X. See the "FORMAT OF

 FILES CONTAINING ASCII HEX" section below for more information.

 -m, --maxlen=LEN

 several important SCSI commands (e.g. INQUIRY and MODE SENSE) Page 16/21

 have response lengths that vary depending on many factors, only

 some of which these utilities take into account. The maximum re?

 sponse length is typically specified in the 'allocation length'

 field of the cdb. In the absence of this option, several utili?

 ties use a default allocation length (sometimes recommended in

 the SCSI draft standards) or a "double fetch" strategy. See

 sg_logs(8) for its description of a "double fetch" strategy.

 These techniques are imperfect and in the presence of faulty

 SCSI targets can cause problems (e.g. some USB mass storage de?

 vices freeze if they receive an INQUIRY allocation length other

 than 36). Also use of this option disables any "double fetch"

 strategy that may have otherwise been used.

 To head off a class of degenerate bugs, if LEN is less than 16

 then it is ignored (usually with a warning message) and the de?

 fault value is used instead. Some utilities use 4 (bytes),

 rather than 16, as the cutoff value.

 -r, --raw

 for SCSI commands that yield a non-trivial response, output that

 response in binary to stdout. If any error messages or warning

 are produced they are usually sent to stderr so as to not inter?

 fere with the output from this option.

 Some utilities that consume data to send to the DEVICE along

 with the SCSI command, use this option. Alternatively the

 --in=FN option causes DEVICE to be ignored and the response data

 (to be decoded) fetched from a file named FN. In these cases

 this option may indicate that binary data can be read from stdin

 or from a nominated file (e.g. FN).

 -t, --timeout=SECS

 utilities that issue potentially long-running SCSI commands of?

 ten have a --timeout=SECS option. This typically instructs the

 operating system to abort the SCSI command in question once the

 timeout expires. Aborting SCSI commands is typically a messy

 business and in the case of format like commands may leave the Page 17/21

 device in a "format corrupt" state requiring another long-run?

 ning re-initialization command to be sent. The argument, SECS,

 is usually in seconds and the short form of the option may be

 something other than -t since the timeout option was typically

 added later as storage devices grew in size and initialization

 commands took longer. Since many utilities had relatively long

 internal command timeouts before this option was introduced, the

 actual command timeout given to the operating systems is the

 higher of the internal timeout and SECS.

 Many long running SCSI commands have an IMMED bit which causes

 the command to finish relatively quickly but the initialization

 process to continue. In such cases the REQUEST SENSE command can

 be used to monitor progress with its progress indication field

 (see the sg_requests and sg_turs utilities). Utilities that

 send such SCSI command either have an --immed option or a --wait

 option which is the logical inverse of the "immediate" action.

 -v, --verbose

 increase the level of verbosity, (i.e. debug output). Can be

 used multiple times to further increase verbosity. The addi?

 tional output caused by this option is almost always sent to

 stderr.

 -V, --version

 print the version string and then exit. Each utility has its own

 version number and date of last code change.

NUMERIC ARGUMENTS

 Many utilities have command line options that take numeric arguments.

 These numeric arguments can be large values (e.g. a logical block ad?

 dress (LBA) on a disk) and can be inconvenient to enter in the default

 decimal representation. So various other representations are permitted.

 Multiplicative suffixes are accepted. They are one, two or three letter

 strings appended directly after the number to which they apply:

 c C *1

 w W *2 Page 18/21

 b B *512

 k K KiB *1024

 KB kB *1000

 m M MiB *1048576

 MB mB *1000000

 g G GiB *(2^30)

 GB gB *(10^9)

 t T TiB *(2^40)

 TB *(10^12)

 p P PiB *(2^50)

 PB *(10^15)

 An example is "2k" for 2048. The large tera and peta suffixes are only

 available for numeric arguments that might require 64 bits to represent

 internally.

 These multiplicative suffixes are compatible with GNU's dd command

 (since 2002) which claims compliance with SI and with IEC 60027-2.

 A suffix of the form "x<n>" multiplies the preceding number by <n>. An

 example is "2x33" for "66". The left argument cannot be '0' as '0x'

 will be interpreted as hexadecimal number prefix (see below). The left

 argument to the multiplication must end in a hexadecimal digit (i.e. 0

 to f) and the whole expression cannot have any embedded whitespace

 (e.g. spaces). An ugly example: "0xfx0x2" for 30.

 A suffix of the form "+<n>" adds the preceding number to <n>. An exam?

 ple is "3+1k" for "1027". The left argument to the addition must end in

 a hexadecimal digit (i.e. 0 to f) and the whole expression cannot have

 any embedded whitespace (e.g. spaces). Another example: "0xf+0x2" for

 17.

 Alternatively numerical arguments can be given in hexadecimal. There

 are two syntaxes. The number can be preceded by either "0x" or "0X" as

 found in the C programming language. The second hexadecimal representa?

 tion is a trailing "h" or "H" as found in (storage) standards. When hex

 numbers are given, multipliers cannot be used. For example the decimal

 value "256" can be given as "0x100" or "100h". Page 19/21

FORMAT OF FILES CONTAINING ASCII HEX

 Such a file is assumed to contain a sequence of one or two digit ASCII

 hexadecimal values separated by whitespace. "Whitespace consists of ei?

 ther spaces, tabs, blank lines, or any combination thereof". Each one

 or two digit ASCII hex pair is decoded into a byte (i.e. 8 bits). The

 following will be decoded to valid (ascending valued) bytes: '0', '01',

 '3', 'c', 'F', '4a', 'cC', 'ff'. Lines containing only whitespace are

 ignored. The contents of any line containing a hash mark ('#') is ig?

 nored from that point until the end of that line. Users are encouraged

 to use hash marks to introduce comments in hex files. The author uses

 the extension'.hex' on such files. Examples can be found in the 'inhex'

 directory.

MICROCODE AND FIRMWARE

 There are two standardized methods for downloading microcode (i.e. de?

 vice firmware) to a SCSI device. The more general way is with the SCSI

 WRITE BUFFER command, see the sg_write_buffer utility. SCSI enclosures

 have their own method based on the Download microcode control/status

 diagnostic page, see the sg_ses_microcode utility.

SCRIPTS, EXAMPLES and UTILS

 There are several bash shell scripts in the 'scripts' subdirectory that

 invoke compiled utilities (e.g. sg_readcap). Several of the scripts

 start with 'scsi_' rather than 'sg_'. One purpose of these scripts is

 to call the same utility (e.g. sg_readcap) on multiple devices. Most of

 the basic compiled utilities only allow one device as an argument. Some

 distributions install these scripts in a more visible directory (e.g.

 /usr/bin). Some of these scripts have man page entries. See the README

 file in the 'scripts' subdirectory.

 There is some example C code plus examples of complex invocations in

 the 'examples' subdirectory. There is also a README file. The example C

 may be a simpler example of how to use a SCSI pass-through in Linux

 than the main utilities (found in the 'src' subdirectory). This is due

 to the fewer abstraction layers (e.g. they don't worry the MinGW in

 Windows may open a file in text rather than binary mode). Page 20/21

 Some utilities that the author has found useful have been placed in the

 'utils' subdirectory.

WEB SITE

 There is a web page discussing this package at

 https://sg.danny.cz/sg/sg3_utils.html . The device naming used by this

 package on various operating systems is discussed at:

 https://sg.danny.cz/sg/device_name.html . There is a git code mirror at

 https://github.com/hreinecke/sg3_utils . The principle code repository

 uses subversion and is on the author's equipment. The author keeps

 track of this via the subversion revision number which is an ascending

 integer (currently at 774 for this package). The github mirror gets up?

 dated periodically from the author's repository. Depending on the time

 of update, the above Downloads section at sg.danny.cz may be more up to

 date than the github mirror.

AUTHORS

 Written by Douglas Gilbert. Some utilities have been contributed, see

 the CREDITS file and individual source files (in the 'src' directory).

REPORTING BUGS

 Report bugs to <dgilbert at interlog dot com>.

COPYRIGHT

 Copyright ? 1999-2021 Douglas Gilbert

 Some utilities are distributed under a GPL version 2 license while oth?

 ers, usually more recent ones, are under a FreeBSD license. The files

 that are common to almost all utilities and thus contain the most reus?

 able code, namely sg_lib.[hc], sg_cmds_basic.[hc] and sg_cmds_ex?

 tra.[hc] are under a FreeBSD license. There is NO warranty; not even

 for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO

 sdparm(sdparm), ddpt(ddpt), lsscsi(lsscsi), dmesg(1), mt(1)

sg3_utils-1.47 November 2021 SG3_UTILS(8)

Page 21/21

