
Rocky Enterprise Linux 9.2 Manual Pages on command 'setuid32.2'

$ man setuid32.2

SETUID(2) Linux Programmer's Manual SETUID(2)

NAME

 setuid - set user identity

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int setuid(uid_t uid);

DESCRIPTION

 setuid() sets the effective user ID of the calling process. If the

 calling process is privileged (more precisely: if the process has the

 CAP_SETUID capability in its user namespace), the real UID and saved

 set-user-ID are also set.

 Under Linux, setuid() is implemented like the POSIX version with the

 _POSIX_SAVED_IDS feature. This allows a set-user-ID (other than root)

 program to drop all of its user privileges, do some un-privileged work,

 and then reengage the original effective user ID in a secure manner.

 If the user is root or the program is set-user-ID-root, special care

 must be taken: setuid() checks the effective user ID of the caller and Page 1/3

 if it is the superuser, all process-related user ID's are set to uid.

 After this has occurred, it is impossible for the program to regain

 root privileges.

 Thus, a set-user-ID-root program wishing to temporarily drop root priv?

 ileges, assume the identity of an unprivileged user, and then regain

 root privileges afterward cannot use setuid(). You can accomplish this

 with seteuid(2).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

 Note: there are cases where setuid() can fail even when the caller is

 UID 0; it is a grave security error to omit checking for a failure re?

 turn from setuid().

ERRORS

 EAGAIN The call would change the caller's real UID (i.e., uid does not

 match the caller's real UID), but there was a temporary failure

 allocating the necessary kernel data structures.

 EAGAIN uid does not match the real user ID of the caller and this call

 would bring the number of processes belonging to the real user

 ID uid over the caller's RLIMIT_NPROC resource limit. Since

 Linux 3.1, this error case no longer occurs (but robust applica?

 tions should check for this error); see the description of EA?

 GAIN in execve(2).

 EINVAL The user ID specified in uid is not valid in this user name?

 space.

 EPERM The user is not privileged (Linux: does not have the CAP_SETUID

 capability in its user namespace) and uid does not match the

 real UID or saved set-user-ID of the calling process.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4. Not quite compatible with the 4.4BSD

 call, which sets all of the real, saved, and effective user IDs.

NOTES

 Linux has the concept of the filesystem user ID, normally equal to the Page 2/3

 effective user ID. The setuid() call also sets the filesystem user ID

 of the calling process. See setfsuid(2).

 If uid is different from the old effective UID, the process will be

 forbidden from leaving core dumps.

 The original Linux setuid() system call supported only 16-bit user IDs.

 Subsequently, Linux 2.4 added setuid32() supporting 32-bit IDs. The

 glibc setuid() wrapper function transparently deals with the variation

 across kernel versions.

 C library/kernel differences

 At the kernel level, user IDs and group IDs are a per-thread attribute.

 However, POSIX requires that all threads in a process share the same

 credentials. The NPTL threading implementation handles the POSIX re?

 quirements by providing wrapper functions for the various system calls

 that change process UIDs and GIDs. These wrapper functions (including

 the one for setuid()) employ a signal-based technique to ensure that

 when one thread changes credentials, all of the other threads in the

 process also change their credentials. For details, see nptl(7).

SEE ALSO

 getuid(2), seteuid(2), setfsuid(2), setreuid(2), capabilities(7), cre?

 dentials(7), user_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-03-06 SETUID(2)

Page 3/3

