
Rocky Enterprise Linux 9.2 Manual Pages on command 'setrlimit.2'

$ man setrlimit.2

GETRLIMIT(2)               Linux Programmer's Manual              GETRLIMIT(2)

NAME

       getrlimit, setrlimit, prlimit - get/set resource limits

SYNOPSIS

       #include <sys/time.h>

       #include <sys/resource.h>

       int getrlimit(int resource, struct rlimit *rlim);

       int setrlimit(int resource, const struct rlimit *rlim);

       int prlimit(pid_t pid, int resource, const struct rlimit *new_limit,

                   struct rlimit *old_limit);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       prlimit(): _GNU_SOURCE

DESCRIPTION

       The  getrlimit() and setrlimit() system calls get and set resource lim?

       its.  Each resource has an associated soft and hard limit,  as  defined

       by the rlimit structure:

           struct rlimit {

               rlim_t rlim_cur;  /* Soft limit */ Page 1/12



               rlim_t rlim_max;  /* Hard limit (ceiling for rlim_cur) */

           };

       The  soft  limit  is  the value that the kernel enforces for the corre?

       sponding resource.  The hard limit acts  as  a  ceiling  for  the  soft

       limit:  an  unprivileged process may set only its soft limit to a value

       in the range from 0 up to the hard limit, and (irreversibly) lower  its

       hard   limit.    A  privileged  process  (under  Linux:  one  with  the

       CAP_SYS_RESOURCE capability in the initial user namespace) may make ar?

       bitrary changes to either limit value.

       The  value  RLIM_INFINITY  denotes  no limit on a resource (both in the

       structure returned by getrlimit() and in the structure passed to  setr?

       limit()).

       The resource argument must be one of:

       RLIMIT_AS

              This  is  the  maximum size of the process's virtual memory (ad?

              dress space).  The limit is specified in bytes, and  is  rounded

              down  to  the  system  page  size.   This limit affects calls to

              brk(2), mmap(2), and mremap(2), which fail with the error ENOMEM

              upon  exceeding this limit.  In addition, automatic stack expan?

              sion fails (and generates a SIGSEGV that kills the process if no

              alternate  stack  has  been  made available via sigaltstack(2)).

              Since the value is a long, on machines with a 32-bit long either

              this limit is at most 2 GiB, or this resource is unlimited.

       RLIMIT_CORE

              This  is  the maximum size of a core file (see core(5)) in bytes

              that the process may dump.  When 0 no core dump files  are  cre?

              ated.  When nonzero, larger dumps are truncated to this size.

       RLIMIT_CPU

              This  is a limit, in seconds, on the amount of CPU time that the

              process can consume.  When the process reaches the  soft  limit,

              it is sent a SIGXCPU signal.  The default action for this signal

              is to terminate the process.  However, the signal can be caught,

              and  the handler can return control to the main program.  If the Page 2/12



              process continues to consume CPU time, it will be  sent  SIGXCPU

              once  per  second until the hard limit is reached, at which time

              it is sent SIGKILL.  (This latter point describes  Linux  behav?

              ior.   Implementations  vary  in  how they treat processes which

              continue to consume CPU time  after  reaching  the  soft  limit.

              Portable applications that need to catch this signal should per?

              form an orderly termination upon first receipt of SIGXCPU.)

       RLIMIT_DATA

              This is the maximum size of the process's data segment (initial?

              ized  data,  uninitialized data, and heap).  The limit is speci?

              fied in bytes, and is rounded down  to  the  system  page  size.

              This  limit  affects  calls to brk(2), sbrk(2), and (since Linux

              4.7) mmap(2), which fail with the error ENOMEM upon encountering

              the soft limit of this resource.

       RLIMIT_FSIZE

              This  is the maximum size in bytes of files that the process may

              create.  Attempts to extend a file beyond this limit  result  in

              delivery  of  a  SIGXFSZ signal.  By default, this signal termi?

              nates a process, but a process can catch this signal instead, in

              which  case  the  relevant  system  call  (e.g., write(2), trun?

              cate(2)) fails with the error EFBIG.

       RLIMIT_LOCKS (Linux 2.4.0 to 2.4.24)

              This is a limit on the combined number of flock(2) locks and fc?

              ntl(2) leases that this process may establish.

       RLIMIT_MEMLOCK

              This is the maximum number of bytes of memory that may be locked

              into RAM.  This limit is in effect rounded down to  the  nearest

              multiple  of the system page size.  This limit affects mlock(2),

              mlockall(2), and the mmap(2) MAP_LOCKED operation.  Since  Linux

              2.6.9,  it  also affects the shmctl(2) SHM_LOCK operation, where

              it sets a maximum on the total bytes in shared  memory  segments

              (see  shmget(2))  that  may be locked by the real user ID of the

              calling process.  The shmctl(2) SHM_LOCK locks are accounted for Page 3/12



              separately  from  the  per-process  memory  locks established by

              mlock(2), mlockall(2), and mmap(2)  MAP_LOCKED;  a  process  can

              lock bytes up to this limit in each of these two categories.

              In  Linux kernels before 2.6.9, this limit controlled the amount

              of memory that could be locked by a privileged  process.   Since

              Linux 2.6.9, no limits are placed on the amount of memory that a

              privileged process may lock, and this limit instead governs  the

              amount of memory that an unprivileged process may lock.

       RLIMIT_MSGQUEUE (since Linux 2.6.8)

              This is a limit on the number of bytes that can be allocated for

              POSIX message queues  for  the  real  user  ID  of  the  calling

              process.   This  limit is enforced for mq_open(3).  Each message

              queue that the user creates counts (until it is removed) against

              this limit according to the formula:

                  Since Linux 3.5:

                      bytes = attr.mq_maxmsg * sizeof(struct msg_msg) +

                              min(attr.mq_maxmsg, MQ_PRIO_MAX) *

                                    sizeof(struct posix_msg_tree_node)+

                                              /* For overhead */

                              attr.mq_maxmsg * attr.mq_msgsize;

                                              /* For message data */

                  Linux 3.4 and earlier:

                      bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) +

                                              /* For overhead */

                              attr.mq_maxmsg * attr.mq_msgsize;

                                              /* For message data */

              where  attr is the mq_attr structure specified as the fourth ar?

              gument to mq_open(3), and the  msg_msg  and  posix_msg_tree_node

              structures are kernel-internal structures.

              The "overhead" addend in the formula accounts for overhead bytes

              required by the implementation and ensures that the user  cannot

              create  an  unlimited  number of zero-length messages (such mes?

              sages nevertheless each consume some system memory for bookkeep? Page 4/12



              ing overhead).

       RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)

              This  specifies  a ceiling to which the process's nice value can

              be raised using setpriority(2) or nice(2).  The  actual  ceiling

              for  the  nice value is calculated as 20 - rlim_cur.  The useful

              range for this limit is thus from 1  (corresponding  to  a  nice

              value of 19) to 40 (corresponding to a nice value of -20).  This

              unusual choice of range was necessary because  negative  numbers

              cannot  be  specified as resource limit values, since they typi?

              cally have special meanings.  For example,  RLIM_INFINITY  typi?

              cally is the same as -1.  For more detail on the nice value, see

              sched(7).

       RLIMIT_NOFILE

              This specifies a value one greater than  the  maximum  file  de?

              scriptor  number  that  can be opened by this process.  Attempts

              (open(2), pipe(2), dup(2), etc.)  to exceed this limit yield the

              error  EMFILE.  (Historically, this limit was named RLIMIT_OFILE

              on BSD.)

              Since Linux 4.5, this limit also defines the maximum  number  of

              file  descriptors  that an unprivileged process (one without the

              CAP_SYS_RESOURCE capability) may have "in flight" to other  pro?

              cesses,  by being passed across UNIX domain sockets.  This limit

              applies to the sendmsg(2) system call.  For further details, see

              unix(7).

       RLIMIT_NPROC

              This  is  a limit on the number of extant process (or, more pre?

              cisely on Linux, threads) for the real user ID  of  the  calling

              process.   So  long as the current number of processes belonging

              to this process's real user ID is greater than or equal to  this

              limit, fork(2) fails with the error EAGAIN.

              The  RLIMIT_NPROC  limit is not enforced for processes that have

              either the CAP_SYS_ADMIN or the CAP_SYS_RESOURCE capability.

       RLIMIT_RSS Page 5/12



              This is a limit (in bytes) on the process's  resident  set  (the

              number of virtual pages resident in RAM).  This limit has effect

              only in Linux 2.4.x, x < 30, and there  affects  only  calls  to

              madvise(2) specifying MADV_WILLNEED.

       RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)

              This  specifies  a ceiling on the real-time priority that may be

              set for this process using sched_setscheduler(2) and  sched_set?

              param(2).

              For  further  details  on  real-time  scheduling  policies,  see

              sched(7)

       RLIMIT_RTTIME (since Linux 2.6.25)

              This is a limit (in microseconds) on the amount of CPU time that

              a process scheduled under a real-time scheduling policy may con?

              sume without making a blocking system call.  For the purpose  of

              this  limit,  each  time a process makes a blocking system call,

              the count of its consumed CPU time is reset to  zero.   The  CPU

              time  count  is not reset if the process continues trying to use

              the CPU but is preempted, its time slice expires,  or  it  calls

              sched_yield(2).

              Upon reaching the soft limit, the process is sent a SIGXCPU sig?

              nal.  If the process catches or ignores this signal and  contin?

              ues consuming CPU time, then SIGXCPU will be generated once each

              second until the hard limit  is  reached,  at  which  point  the

              process is sent a SIGKILL signal.

              The  intended  use  of this limit is to stop a runaway real-time

              process from locking up the system.

              For  further  details  on  real-time  scheduling  policies,  see

              sched(7)

       RLIMIT_SIGPENDING (since Linux 2.6.8)

              This  is a limit on the number of signals that may be queued for

              the real user ID of the  calling  process.   Both  standard  and

              real-time  signals  are counted for the purpose of checking this

              limit.  However, the limit is enforced only for sigqueue(3);  it Page 6/12



              is  always  possible to use kill(2) to queue one instance of any

              of the signals that are not already queued to the process.

       RLIMIT_STACK

              This is the maximum size of the process stack, in  bytes.   Upon

              reaching  this  limit, a SIGSEGV signal is generated.  To handle

              this signal, a process must employ  an  alternate  signal  stack

              (sigaltstack(2)).

              Since  Linux  2.6.23,  this  limit also determines the amount of

              space used for the process's command-line arguments and environ?

              ment variables; for details, see execve(2).

   prlimit()

       The Linux-specific prlimit() system call combines and extends the func?

       tionality of setrlimit() and getrlimit().  It can be used to  both  set

       and get the resource limits of an arbitrary process.

       The resource argument has the same meaning as for setrlimit() and getr?

       limit().

       If the new_limit argument is a not NULL, then the rlimit  structure  to

       which  it points is used to set new values for the soft and hard limits

       for resource.  If the old_limit argument is a not NULL, then a success?

       ful  call to prlimit() places the previous soft and hard limits for re?

       source in the rlimit structure pointed to by old_limit.

       The pid argument specifies the ID of the process on which the  call  is

       to operate.  If pid is 0, then the call applies to the calling process.

       To set or get the resources of a process other than itself, the  caller

       must  have the CAP_SYS_RESOURCE capability in the user namespace of the

       process whose resource limits are being changed, or  the  real,  effec?

       tive,  and saved set user IDs of the target process must match the real

       user ID of the caller and the real, effective, and saved set group  IDs

       of the target process must match the real group ID of the caller.

RETURN VALUE

       On success, these system calls return 0.  On error, -1 is returned, and

       errno is set appropriately.

ERRORS Page 7/12



       EFAULT A pointer argument points to a location outside  the  accessible

              address space.

       EINVAL The  value  specified  in  resource  is not valid; or, for setr?

              limit()  or   prlimit():   rlim->rlim_cur   was   greater   than

              rlim->rlim_max.

       EPERM  An  unprivileged  process  tried  to  raise  the hard limit; the

              CAP_SYS_RESOURCE capability is required to do this.

       EPERM  The caller tried to increase the hard RLIMIT_NOFILE limit  above

              the maximum defined by /proc/sys/fs/nr_open (see proc(5))

       EPERM  (prlimit())  The  calling process did not have permission to set

              limits for the process specified by pid.

       ESRCH  Could not find a process with the ID specified in pid.

VERSIONS

       The prlimit() system call is available  since  Linux  2.6.36.   Library

       support is available since glibc 2.13.

ATTRIBUTES

       For  an  explanation  of  the  terms  used  in  this  section,  see at?

       tributes(7).

       ????????????????????????????????????????????????????????????????

       ?Interface                           ? Attribute     ? Value   ?

       ????????????????????????????????????????????????????????????????

       ?getrlimit(), setrlimit(), prlimit() ? Thread safety ? MT-Safe ?

       ????????????????????????????????????????????????????????????????

CONFORMING TO

       getrlimit(), setrlimit(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

       prlimit(): Linux-specific.

       RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are  not  specified

       in  POSIX.1;  they  are present on the BSDs and Linux, but on few other

       implementations.  RLIMIT_RSS derives from BSD and is not  specified  in

       POSIX.1;   it   is   nevertheless   present  on  most  implementations.

       RLIMIT_MSGQUEUE,   RLIMIT_NICE,   RLIMIT_RTPRIO,   RLIMIT_RTTIME,   and

       RLIMIT_SIGPENDING are Linux-specific.

NOTES Page 8/12



       A child process created via fork(2) inherits its parent's resource lim?

       its.  Resource limits are preserved across execve(2).

       Resource limits are per-process attributes that are shared  by  all  of

       the threads in a process.

       Lowering the soft limit for a resource below the process's current con?

       sumption of that resource will succeed (but will  prevent  the  process

       from further increasing its consumption of the resource).

       One  can set the resource limits of the shell using the built-in ulimit

       command (limit in csh(1)).  The shell's resource limits  are  inherited

       by the processes that it creates to execute commands.

       Since Linux 2.6.24, the resource limits of any process can be inspected

       via /proc/[pid]/limits; see proc(5).

       Ancient systems provided a vlimit() function with a similar purpose  to

       setrlimit().  For backward compatibility, glibc also provides vlimit().

       All new applications should be written using setrlimit().

   C library/kernel ABI differences

       Since version 2.13, the glibc getrlimit() and setrlimit() wrapper func?

       tions  no longer invoke the corresponding system calls, but instead em?

       ploy prlimit(), for the reasons described in BUGS.

       The name of the glibc wrapper function  is  prlimit();  the  underlying

       system call is prlimit64().

BUGS

       In  older Linux kernels, the SIGXCPU and SIGKILL signals delivered when

       a process encountered the soft and hard RLIMIT_CPU limits  were  deliv?

       ered one (CPU) second later than they should have been.  This was fixed

       in kernel 2.6.8.

       In 2.6.x kernels before 2.6.17, a RLIMIT_CPU  limit  of  0  is  wrongly

       treated  as  "no limit" (like RLIM_INFINITY).  Since Linux 2.6.17, set?

       ting a limit of 0 does have an effect, but is  actually  treated  as  a

       limit of 1 second.

       A  kernel  bug means that RLIMIT_RTPRIO does not work in kernel 2.6.12;

       the problem is fixed in kernel 2.6.13.

       In kernel 2.6.12, there was an off-by-one mismatch between the priority Page 9/12



       ranges returned by getpriority(2) and RLIMIT_NICE.  This had the effect

       that  the  actual  ceiling  for  the  nice  value  was  calculated   as

       19 - rlim_cur.  This was fixed in kernel 2.6.13.

       Since  Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and

       has a handler installed for SIGXCPU, then, in addition to invoking  the

       signal  handler,  the  kernel  increases  the soft limit by one second.

       This behavior repeats if the process continues to consume CPU time, un?

       til  the  hard  limit is reached, at which point the process is killed.

       Other implementations do not change the RLIMIT_CPU soft limit  in  this

       manner,  and  the  Linux behavior is probably not standards conformant;

       portable applications should avoid relying on this  Linux-specific  be?

       havior.   The  Linux-specific RLIMIT_RTTIME limit exhibits the same be?

       havior when the soft limit is encountered.

       Kernels before 2.4.22 did not diagnose the error EINVAL for setrlimit()

       when rlim->rlim_cur was greater than rlim->rlim_max.

       Linux  doesn't  return  an  error when an attempt to set RLIMIT_CPU has

       failed, for compatibility reasons.

   Representation of "large" resource limit values on 32-bit platforms

       The glibc getrlimit() and setrlimit() wrapper functions  use  a  64-bit

       rlim_t  data  type, even on 32-bit platforms.  However, the rlim_t data

       type used in the getrlimit() and setrlimit() system calls is a (32-bit)

       unsigned  long.   Furthermore, in Linux, the kernel represents resource

       limits on 32-bit platforms as unsigned long.  However,  a  32-bit  data

       type   is   not   wide  enough.   The  most  pertinent  limit  here  is

       RLIMIT_FSIZE, which specifies the maximum size  to  which  a  file  can

       grow: to be useful, this limit must be represented using a type that is

       as wide as the type used to represent file offsets?that is, as wide  as

       a 64-bit off_t (assuming a program compiled with _FILE_OFFSET_BITS=64).

       To  work around this kernel limitation, if a program tried to set a re?

       source limit to a value larger than can be represented in a 32-bit  un?

       signed  long, then the glibc setrlimit() wrapper function silently con?

       verted the limit value to RLIM_INFINITY.  In other words, the requested

       resource limit setting was silently ignored. Page 10/12



       Since  version  2.13,  glibc  works around the limitations of the getr?

       limit() and setrlimit() system calls by  implementing  setrlimit()  and

       getrlimit() as wrapper functions that call prlimit().

EXAMPLES

       The program below demonstrates the use of prlimit().

       #define _GNU_SOURCE

       #define _FILE_OFFSET_BITS 64

       #include <stdint.h>

       #include <stdio.h>

       #include <time.h>

       #include <stdlib.h>

       #include <unistd.h>

       #include <sys/resource.h>

       #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

                               } while (0)

       int

       main(int argc, char *argv[])

       {

           struct rlimit old, new;

           struct rlimit *newp;

           pid_t pid;

           if (!(argc == 2 || argc == 4)) {

               fprintf(stderr, "Usage: %s <pid> [<new-soft-limit> "

                       "<new-hard-limit>]\n", argv[0]);

               exit(EXIT_FAILURE);

           }

           pid = atoi(argv[1]);        /* PID of target process */

           newp = NULL;

           if (argc == 4) {

               new.rlim_cur = atoi(argv[2]);

               new.rlim_max = atoi(argv[3]);

               newp = &new;

           } Page 11/12



           /* Set CPU time limit of target process; retrieve and display

              previous limit */

           if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)

               errExit("prlimit-1");

           printf("Previous limits: soft=%jd; hard=%jd\n",

                   (intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

           /* Retrieve and display new CPU time limit */

           if (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)

               errExit("prlimit-2");

           printf("New limits: soft=%jd; hard=%jd\n",

                   (intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

           exit(EXIT_SUCCESS);

       }

SEE ALSO

       prlimit(1), dup(2), fcntl(2), fork(2), getrusage(2), mlock(2), mmap(2),

       open(2),  quotactl(2),  sbrk(2),  shmctl(2),  malloc(3),   sigqueue(3),

       ulimit(3),  core(5),  capabilities(7), cgroups(7), credentials(7), sig?

       nal(7)

COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-11-01                      GETRLIMIT(2)

Page 12/12


