
Rocky Enterprise Linux 9.2 Manual Pages on command 'setresuid32.2'

$ man setresuid32.2

SETRESUID(2) Linux Programmer's Manual SETRESUID(2)

NAME

 setresuid, setresgid - set real, effective and saved user or group ID

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <unistd.h>

 int setresuid(uid_t ruid, uid_t euid, uid_t suid);

 int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

DESCRIPTION

 setresuid() sets the real user ID, the effective user ID, and the saved

 set-user-ID of the calling process.

 An unprivileged process may change its real UID, effective UID, and

 saved set-user-ID, each to one of: the current real UID, the current

 effective UID or the current saved set-user-ID.

 A privileged process (on Linux, one having the CAP_SETUID capability)

 may set its real UID, effective UID, and saved set-user-ID to arbitrary

 values.

 If one of the arguments equals -1, the corresponding value is not Page 1/3

 changed.

 Regardless of what changes are made to the real UID, effective UID, and

 saved set-user-ID, the filesystem UID is always set to the same value

 as the (possibly new) effective UID.

 Completely analogously, setresgid() sets the real GID, effective GID,

 and saved set-group-ID of the calling process (and always modifies the

 filesystem GID to be the same as the effective GID), with the same re?

 strictions for unprivileged processes.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

 Note: there are cases where setresuid() can fail even when the caller

 is UID 0; it is a grave security error to omit checking for a failure

 return from setresuid().

ERRORS

 EAGAIN The call would change the caller's real UID (i.e., ruid does not

 match the caller's real UID), but there was a temporary failure

 allocating the necessary kernel data structures.

 EAGAIN ruid does not match the caller's real UID and this call would

 bring the number of processes belonging to the real user ID ruid

 over the caller's RLIMIT_NPROC resource limit. Since Linux 3.1,

 this error case no longer occurs (but robust applications should

 check for this error); see the description of EAGAIN in ex?

 ecve(2).

 EINVAL One or more of the target user or group IDs is not valid in this

 user namespace.

 EPERM The calling process is not privileged (did not have the neces?

 sary capability in its user namespace) and tried to change the

 IDs to values that are not permitted. For setresuid(), the nec?

 essary capability is CAP_SETUID; for setresgid(), it is CAP_SET?

 GID.

VERSIONS

 These calls are available under Linux since Linux 2.1.44. Page 2/3

CONFORMING TO

 These calls are nonstandard; they also appear on HP-UX and some of the

 BSDs.

NOTES

 Under HP-UX and FreeBSD, the prototype is found in <unistd.h>. Under

 Linux, the prototype is provided by glibc since version 2.3.2.

 The original Linux setresuid() and setresgid() system calls supported

 only 16-bit user and group IDs. Subsequently, Linux 2.4 added setre?

 suid32() and setresgid32(), supporting 32-bit IDs. The glibc setre?

 suid() and setresgid() wrapper functions transparently deal with the

 variations across kernel versions.

 C library/kernel differences

 At the kernel level, user IDs and group IDs are a per-thread attribute.

 However, POSIX requires that all threads in a process share the same

 credentials. The NPTL threading implementation handles the POSIX re?

 quirements by providing wrapper functions for the various system calls

 that change process UIDs and GIDs. These wrapper functions (including

 those for setresuid() and setresgid()) employ a signal-based technique

 to ensure that when one thread changes credentials, all of the other

 threads in the process also change their credentials. For details, see

 nptl(7).

SEE ALSO

 getresuid(2), getuid(2), setfsgid(2), setfsuid(2), setreuid(2), se?

 tuid(2), capabilities(7), credentials(7), user_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SETRESUID(2)

Page 3/3

