
Rocky Enterprise Linux 9.2 Manual Pages on command 'semop.2'

$ man semop.2

SEMOP(2) Linux Programmer's Manual SEMOP(2)

NAME

 semop, semtimedop - System V semaphore operations

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 int semop(int semid, struct sembuf *sops, size_t nsops);

 int semtimedop(int semid, struct sembuf *sops, size_t nsops,

 const struct timespec *timeout);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 semtimedop(): _GNU_SOURCE

DESCRIPTION

 Each semaphore in a System V semaphore set has the following associated

 values:

 unsigned short semval; /* semaphore value */

 unsigned short semzcnt; /* # waiting for zero */

 unsigned short semncnt; /* # waiting for increase */ Page 1/7

 pid_t sempid; /* PID of process that last

 semop() performs operations on selected semaphores in the set indicated

 by semid. Each of the nsops elements in the array pointed to by sops

 is a structure that specifies an operation to be performed on a single

 semaphore. The elements of this structure are of type struct sembuf,

 containing the following members:

 unsigned short sem_num; /* semaphore number */

 short sem_op; /* semaphore operation */

 short sem_flg; /* operation flags */

 Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If an opera?

 tion specifies SEM_UNDO, it will be automatically undone when the

 process terminates.

 The set of operations contained in sops is performed in array order,

 and atomically, that is, the operations are performed either as a com?

 plete unit, or not at all. The behavior of the system call if not all

 operations can be performed immediately depends on the presence of the

 IPC_NOWAIT flag in the individual sem_flg fields, as noted below.

 Each operation is performed on the sem_num-th semaphore of the sema?

 phore set, where the first semaphore of the set is numbered 0. There

 are three types of operation, distinguished by the value of sem_op.

 If sem_op is a positive integer, the operation adds this value to the

 semaphore value (semval). Furthermore, if SEM_UNDO is specified for

 this operation, the system subtracts the value sem_op from the sema?

 phore adjustment (semadj) value for this semaphore. This operation can

 always proceed?it never forces a thread to wait. The calling process

 must have alter permission on the semaphore set.

 If sem_op is zero, the process must have read permission on the sema?

 phore set. This is a "wait-for-zero" operation: if semval is zero, the

 operation can immediately proceed. Otherwise, if IPC_NOWAIT is speci?

 fied in sem_flg, semop() fails with errno set to EAGAIN (and none of

 the operations in sops is performed). Otherwise, semzcnt (the count of

 threads waiting until this semaphore's value becomes zero) is incre?

 mented by one and the thread sleeps until one of the following occurs: Page 2/7

 ? semval becomes 0, at which time the value of semzcnt is decremented.

 ? The semaphore set is removed: semop() fails, with errno set to EIDRM.

 ? The calling thread catches a signal: the value of semzcnt is decre?

 mented and semop() fails, with errno set to EINTR.

 If sem_op is less than zero, the process must have alter permission on

 the semaphore set. If semval is greater than or equal to the absolute

 value of sem_op, the operation can proceed immediately: the absolute

 value of sem_op is subtracted from semval, and, if SEM_UNDO is speci?

 fied for this operation, the system adds the absolute value of sem_op

 to the semaphore adjustment (semadj) value for this semaphore. If the

 absolute value of sem_op is greater than semval, and IPC_NOWAIT is

 specified in sem_flg, semop() fails, with errno set to EAGAIN (and none

 of the operations in sops is performed). Otherwise, semncnt (the

 counter of threads waiting for this semaphore's value to increase) is

 incremented by one and the thread sleeps until one of the following oc?

 curs:

 ? semval becomes greater than or equal to the absolute value of sem_op:

 the operation now proceeds, as described above.

 ? The semaphore set is removed from the system: semop() fails, with er?

 rno set to EIDRM.

 ? The calling thread catches a signal: the value of semncnt is decre?

 mented and semop() fails, with errno set to EINTR.

 On successful completion, the sempid value for each semaphore specified

 in the array pointed to by sops is set to the caller's process ID. In

 addition, the sem_otime is set to the current time.

 semtimedop()

 semtimedop() behaves identically to semop() except that in those cases

 where the calling thread would sleep, the duration of that sleep is

 limited by the amount of elapsed time specified by the timespec struc?

 ture whose address is passed in the timeout argument. (This sleep in?

 terval will be rounded up to the system clock granularity, and kernel

 scheduling delays mean that the interval may overrun by a small

 amount.) If the specified time limit has been reached, semtimedop() Page 3/7

 fails with errno set to EAGAIN (and none of the operations in sops is

 performed). If the timeout argument is NULL, then semtimedop() behaves

 exactly like semop().

 Note that if semtimedop() is interrupted by a signal, causing the call

 to fail with the error EINTR, the contents of timeout are left un?

 changed.

RETURN VALUE

 If successful, semop() and semtimedop() return 0; otherwise they return

 -1 with errno indicating the error.

ERRORS

 On failure, errno is set to one of the following:

 E2BIG The argument nsops is greater than SEMOPM, the maximum number of

 operations allowed per system call.

 EACCES The calling process does not have the permissions required to

 perform the specified semaphore operations, and does not have

 the CAP_IPC_OWNER capability in the user namespace that governs

 its IPC namespace.

 EAGAIN An operation could not proceed immediately and either IPC_NOWAIT

 was specified in sem_flg or the time limit specified in timeout

 expired.

 EFAULT An address specified in either the sops or the timeout argument

 isn't accessible.

 EFBIG For some operation the value of sem_num is less than 0 or

 greater than or equal to the number of semaphores in the set.

 EIDRM The semaphore set was removed.

 EINTR While blocked in this system call, the thread caught a signal;

 see signal(7).

 EINVAL The semaphore set doesn't exist, or semid is less than zero, or

 nsops has a nonpositive value.

 ENOMEM The sem_flg of some operation specified SEM_UNDO and the system

 does not have enough memory to allocate the undo structure.

 ERANGE For some operation sem_op+semval is greater than SEMVMX, the im?

 plementation dependent maximum value for semval. Page 4/7

VERSIONS

 semtimedop() first appeared in Linux 2.5.52, and was subsequently back?

 ported into kernel 2.4.22. Glibc support for semtimedop() first ap?

 peared in version 2.3.3.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux

 or by any version of POSIX. However, some old implementations required

 the inclusion of these header files, and the SVID also documented their

 inclusion. Applications intended to be portable to such old systems

 may need to include these header files.

 The sem_undo structures of a process aren't inherited by the child pro?

 duced by fork(2), but they are inherited across an execve(2) system

 call.

 semop() is never automatically restarted after being interrupted by a

 signal handler, regardless of the setting of the SA_RESTART flag when

 establishing a signal handler.

 A semaphore adjustment (semadj) value is a per-process, per-semaphore

 integer that is the negated sum of all operations performed on a sema?

 phore specifying the SEM_UNDO flag. Each process has a list of semadj

 values?one value for each semaphore on which it has operated using

 SEM_UNDO. When a process terminates, each of its per-semaphore semadj

 values is added to the corresponding semaphore, thus undoing the effect

 of that process's operations on the semaphore (but see BUGS below).

 When a semaphore's value is directly set using the SETVAL or SETALL re?

 quest to semctl(2), the corresponding semadj values in all processes

 are cleared. The clone(2) CLONE_SYSVSEM flag allows more than one

 process to share a semadj list; see clone(2) for details.

 The semval, sempid, semzcnt, and semnct values for a semaphore can all

 be retrieved using appropriate semctl(2) calls.

 Semaphore limits

 The following limits on semaphore set resources affect the semop() Page 5/7

 call:

 SEMOPM Maximum number of operations allowed for one semop() call. Be?

 fore Linux 3.19, the default value for this limit was 32. Since

 Linux 3.19, the default value is 500. On Linux, this limit can

 be read and modified via the third field of /proc/sys/ker?

 nel/sem. Note: this limit should not be raised above 1000, be?

 cause of the risk of that semop() fails due to kernel memory

 fragmentation when allocating memory to copy the sops array.

 SEMVMX Maximum allowable value for semval: implementation dependent

 (32767).

 The implementation has no intrinsic limits for the adjust on exit maxi?

 mum value (SEMAEM), the system wide maximum number of undo structures

 (SEMMNU) and the per-process maximum number of undo entries system pa?

 rameters.

BUGS

 When a process terminates, its set of associated semadj structures is

 used to undo the effect of all of the semaphore operations it performed

 with the SEM_UNDO flag. This raises a difficulty: if one (or more) of

 these semaphore adjustments would result in an attempt to decrease a

 semaphore's value below zero, what should an implementation do? One

 possible approach would be to block until all the semaphore adjustments

 could be performed. This is however undesirable since it could force

 process termination to block for arbitrarily long periods. Another

 possibility is that such semaphore adjustments could be ignored alto?

 gether (somewhat analogously to failing when IPC_NOWAIT is specified

 for a semaphore operation). Linux adopts a third approach: decreasing

 the semaphore value as far as possible (i.e., to zero) and allowing

 process termination to proceed immediately.

 In kernels 2.6.x, x <= 10, there is a bug that in some circumstances

 prevents a thread that is waiting for a semaphore value to become zero

 from being woken up when the value does actually become zero. This bug

 is fixed in kernel 2.6.11.

EXAMPLES Page 6/7

 The following code segment uses semop() to atomically wait for the

 value of semaphore 0 to become zero, and then increment the semaphore

 value by one.

 struct sembuf sops[2];

 int semid;

 /* Code to set semid omitted */

 sops[0].sem_num = 0; /* Operate on semaphore 0 */

 sops[0].sem_op = 0; /* Wait for value to equal 0 */

 sops[0].sem_flg = 0;

 sops[1].sem_num = 0; /* Operate on semaphore 0 */

 sops[1].sem_op = 1; /* Increment value by one */

 sops[1].sem_flg = 0;

 if (semop(semid, sops, 2) == -1) {

 perror("semop");

 exit(EXIT_FAILURE);

 }

 A further example of the use of semop() can be found in shmop(2).

SEE ALSO

 clone(2), semctl(2), semget(2), sigaction(2), capabilities(7),

 sem_overview(7), sysvipc(7), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SEMOP(2)

Page 7/7

