
Rocky Enterprise Linux 9.2 Manual Pages on command 'semctl.2'

$ man semctl.2

SEMCTL(2) Linux Programmer's Manual SEMCTL(2)

NAME

 semctl - System V semaphore control operations

SYNOPSIS

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/sem.h>

 int semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION

 semctl() performs the control operation specified by cmd on the Sys?

 tem V semaphore set identified by semid, or on the semnum-th semaphore

 of that set. (The semaphores in a set are numbered starting at 0.)

 This function has three or four arguments, depending on cmd. When

 there are four, the fourth has the type union semun. The calling pro?

 gram must define this union as follows:

 union semun {

 int val; /* Value for SETVAL */

 struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */ Page 1/9

 unsigned short *array; /* Array for GETALL, SETALL */

 struct seminfo *__buf; /* Buffer for IPC_INFO

 (Linux-specific) */

 };

 The semid_ds data structure is defined in <sys/sem.h> as follows:

 struct semid_ds {

 struct ipc_perm sem_perm; /* Ownership and permissions */

 time_t sem_otime; /* Last semop time */

 time_t sem_ctime; /* Creation time/time of last

 modification via semctl() */

 unsigned long sem_nsems; /* No. of semaphores in set */

 };

 The fields of the semid_ds structure are as follows:

 sem_perm This is an ipc_perm structure (see below) that specifies the

 access permissions on the semaphore set.

 sem_otime Time of last semop(2) system call.

 sem_ctime Time of creation of semaphore set or time of last semctl()

 IPCSET, SETVAL, or SETALL operation.

 sem_nsems Number of semaphores in the set. Each semaphore of the set

 is referenced by a nonnegative integer ranging from 0 to

 sem_nsems-1.

 The ipc_perm structure is defined as follows (the highlighted fields

 are settable using IPC_SET):

 struct ipc_perm {

 key_t __key; /* Key supplied to semget(2) */

 uid_t uid; /* Effective UID of owner */

 gid_t gid; /* Effective GID of owner */

 uid_t cuid; /* Effective UID of creator */

 gid_t cgid; /* Effective GID of creator */

 unsigned short mode; /* Permissions */

 unsigned short __seq; /* Sequence number */

 };

 The least significant 9 bits of the mode field of the ipc_perm struc? Page 2/9

 ture define the access permissions for the shared memory segment. The

 permission bits are as follows:

 0400 Read by user

 0200 Write by user

 0040 Read by group

 0020 Write by group

 0004 Read by others

 0002 Write by others

 In effect, "write" means "alter" for a semaphore set. Bits 0100, 0010,

 and 0001 (the execute bits) are unused by the system.

 Valid values for cmd are:

 IPC_STAT

 Copy information from the kernel data structure associated with

 semid into the semid_ds structure pointed to by arg.buf. The

 argument semnum is ignored. The calling process must have read

 permission on the semaphore set.

 IPC_SET

 Write the values of some members of the semid_ds structure

 pointed to by arg.buf to the kernel data structure associated

 with this semaphore set, updating also its sem_ctime member.

 The following members of the structure are updated:

 sem_perm.uid, sem_perm.gid, and (the least significant 9 bits

 of) sem_perm.mode.

 The effective UID of the calling process must match the owner

 (sem_perm.uid) or creator (sem_perm.cuid) of the semaphore set,

 or the caller must be privileged. The argument semnum is ig?

 nored.

 IPC_RMID

 Immediately remove the semaphore set, awakening all processes

 blocked in semop(2) calls on the set (with an error return and

 errno set to EIDRM). The effective user ID of the calling

 process must match the creator or owner of the semaphore set, or

 the caller must be privileged. The argument semnum is ignored. Page 3/9

 IPC_INFO (Linux-specific)

 Return information about system-wide semaphore limits and param?

 eters in the structure pointed to by arg.__buf. This structure

 is of type seminfo, defined in <sys/sem.h> if the _GNU_SOURCE

 feature test macro is defined:

 struct seminfo {

 int semmap; /* Number of entries in semaphore

 map; unused within kernel */

 int semmni; /* Maximum number of semaphore sets */

 int semmns; /* Maximum number of semaphores in all

 semaphore sets */

 int semmnu; /* System-wide maximum number of undo

 structures; unused within kernel */

 int semmsl; /* Maximum number of semaphores in a

 set */

 int semopm; /* Maximum number of operations for

 semop(2) */

 int semume; /* Maximum number of undo entries per

 process; unused within kernel */

 int semusz; /* Size of struct sem_undo */

 int semvmx; /* Maximum semaphore value */

 int semaem; /* Max. value that can be recorded for

 semaphore adjustment (SEM_UNDO) */

 };

 The semmsl, semmns, semopm, and semmni settings can be changed

 via /proc/sys/kernel/sem; see proc(5) for details.

 SEM_INFO (Linux-specific)

 Return a seminfo structure containing the same information as

 for IPC_INFO, except that the following fields are returned with

 information about system resources consumed by semaphores: the

 semusz field returns the number of semaphore sets that currently

 exist on the system; and the semaem field returns the total num?

 ber of semaphores in all semaphore sets on the system. Page 4/9

 SEM_STAT (Linux-specific)

 Return a semid_ds structure as for IPC_STAT. However, the semid

 argument is not a semaphore identifier, but instead an index

 into the kernel's internal array that maintains information

 about all semaphore sets on the system.

 SEM_STAT_ANY (Linux-specific, since Linux 4.17)

 Return a seminfo structure containing the same information as

 for SEM_STAT. However, sem_perm.mode is not checked for read

 access for semid meaning that any user can employ this operation

 (just as any user may read /proc/sysvipc/sem to obtain the same

 information).

 GETALL Return semval (i.e., the current value) for all semaphores of

 the set into arg.array. The argument semnum is ignored. The

 calling process must have read permission on the semaphore set.

 GETNCNT

 Return the semncnt value for the semnum-th semaphore of the set

 (i.e., the number of processes waiting for the semaphore's value

 to increase). The calling process must have read permission on

 the semaphore set.

 GETPID Return the sempid value for the semnum-th semaphore of the set.

 This is the PID of the process that last performed an operation

 on that semaphore (but see NOTES). The calling process must

 have read permission on the semaphore set.

 GETVAL Return semval (i.e., the semaphore value) for the semnum-th sem?

 aphore of the set. The calling process must have read permis?

 sion on the semaphore set.

 GETZCNT

 Return the semzcnt value for the semnum-th semaphore of the set

 (i.e., the number of processes waiting for the semaphore value

 to become 0). The calling process must have read permission on

 the semaphore set.

 SETALL Set the semval values for all semaphores of the set using

 arg.array, updating also the sem_ctime member of the semid_ds Page 5/9

 structure associated with the set. Undo entries (see semop(2))

 are cleared for altered semaphores in all processes. If the

 changes to semaphore values would permit blocked semop(2) calls

 in other processes to proceed, then those processes are woken

 up. The argument semnum is ignored. The calling process must

 have alter (write) permission on the semaphore set.

 SETVAL Set the semaphore value (semval) to arg.val for the semnum-th

 semaphore of the set, updating also the sem_ctime member of the

 semid_ds structure associated with the set. Undo entries are

 cleared for altered semaphores in all processes. If the changes

 to semaphore values would permit blocked semop(2) calls in other

 processes to proceed, then those processes are woken up. The

 calling process must have alter permission on the semaphore set.

RETURN VALUE

 On failure, semctl() returns -1 with errno indicating the error.

 Otherwise, the system call returns a nonnegative value depending on cmd

 as follows:

 GETNCNT

 the value of semncnt.

 GETPID the value of sempid.

 GETVAL the value of semval.

 GETZCNT

 the value of semzcnt.

 IPC_INFO

 the index of the highest used entry in the kernel's internal ar?

 ray recording information about all semaphore sets. (This in?

 formation can be used with repeated SEM_STAT or SEM_STAT_ANY op?

 erations to obtain information about all semaphore sets on the

 system.)

 SEM_INFO

 as for IPC_INFO.

 SEM_STAT

 the identifier of the semaphore set whose index was given in Page 6/9

 semid.

 SEM_STAT_ANY

 as for SEM_STAT.

 All other cmd values return 0 on success.

ERRORS

 On failure, errno will be set to one of the following:

 EACCES The argument cmd has one of the values GETALL, GETPID, GETVAL,

 GETNCNT, GETZCNT, IPC_STAT, SEM_STAT, SEM_STAT_ANY, SETALL, or

 SETVAL and the calling process does not have the required per?

 missions on the semaphore set and does not have the

 CAP_IPC_OWNER capability in the user namespace that governs its

 IPC namespace.

 EFAULT The address pointed to by arg.buf or arg.array isn't accessible.

 EIDRM The semaphore set was removed.

 EINVAL Invalid value for cmd or semid. Or: for a SEM_STAT operation,

 the index value specified in semid referred to an array slot

 that is currently unused.

 EPERM The argument cmd has the value IPC_SET or IPC_RMID but the ef?

 fective user ID of the calling process is not the creator (as

 found in sem_perm.cuid) or the owner (as found in sem_perm.uid)

 of the semaphore set, and the process does not have the

 CAP_SYS_ADMIN capability.

 ERANGE The argument cmd has the value SETALL or SETVAL and the value to

 which semval is to be set (for some semaphore of the set) is

 less than 0 or greater than the implementation limit SEMVMX.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

 POSIX.1 specifies the sem_nsems field of the semid_ds structure as hav?

 ing the type unsigned short, and the field is so defined on most other

 systems. It was also so defined on Linux 2.2 and earlier, but, since

 Linux 2.4, the field has the type unsigned long.

NOTES

 The inclusion of <sys/types.h> and <sys/ipc.h> isn't required on Linux Page 7/9

 or by any version of POSIX. However, some old implementations required

 the inclusion of these header files, and the SVID also documented their

 inclusion. Applications intended to be portable to such old systems

 may need to include these header files.

 The IPC_INFO, SEM_STAT, and SEM_INFO operations are used by the ipcs(1)

 program to provide information on allocated resources. In the future

 these may modified or moved to a /proc filesystem interface.

 Various fields in a struct semid_ds were typed as short under Linux 2.2

 and have become long under Linux 2.4. To take advantage of this, a re?

 compilation under glibc-2.1.91 or later should suffice. (The kernel

 distinguishes old and new calls by an IPC_64 flag in cmd.)

 In some earlier versions of glibc, the semun union was defined in

 <sys/sem.h>, but POSIX.1 requires that the caller define this union.

 On versions of glibc where this union is not defined, the macro

 _SEM_SEMUN_UNDEFINED is defined in <sys/sem.h>.

 The following system limit on semaphore sets affects a semctl() call:

 SEMVMX Maximum value for semval: implementation dependent (32767).

 For greater portability, it is best to always call semctl() with four

 arguments.

 The sempid value

 POSIX.1 defines sempid as the "process ID of [the] last operation" on a

 semaphore, and explicitly notes that this value is set by a successful

 semop(2) call, with the implication that no other interface affects the

 sempid value.

 While some implementations conform to the behavior specified in

 POSIX.1, others do not. (The fault here probably lies with POSIX.1

 inasmuch as it likely failed to capture the full range of existing im?

 plementation behaviors.) Various other implementations also update

 sempid for the other operations that update the value of a semaphore:

 the SETVAL and SETALL operations, as well as the semaphore adjustments

 performed on process termination as a consequence of the use of the

 SEM_UNDO flag (see semop(2)).

 Linux also updates sempid for SETVAL operations and semaphore adjust? Page 8/9

 ments. However, somewhat inconsistently, up to and including Linux

 4.5, the kernel did not update sempid for SETALL operations. This was

 rectified in Linux 4.6.

EXAMPLES

 See shmop(2).

SEE ALSO

 ipc(2), semget(2), semop(2), capabilities(7), sem_overview(7),

 sysvipc(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SEMCTL(2)

Page 9/9

