FPDF Libcary

PDF generator

b

Full credit is given to the above companies including the 0§
that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'sem_trywait.3'
$ man sem_trywait.3
SEM_WAIT(3) Linux Programmer's Manual SEM_WAIT(3)
NAME
sem_wait, sem_timedwait, sem_trywait - lock a semaphore
SYNOPSIS
#include <semaphore.h>
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
Link with -pthread.
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
sem_timedwait(): _POSIX_C_SOURCE >= 200112L
DESCRIPTION
sem_wait() decrements (locks) the semaphore pointed to by sem. If the
semaphore's value is greater than zero, then the decrement proceeds,
and the function returns, immediately. If the semaphore currently has
the value zero, then the call blocks until either it becomes possible
to perform the decrement (i.e., the semaphore value rises above zero),

or a signal handler interrupts the call. Page 1/5

sem_trywait() is the same as sem_wait(), except that if the decrement
cannot be immediately performed, then call returns an error (errno set
to EAGAIN) instead of blocking.
sem_timedwait() is the same as sem_wait(), except that abs_timeout
specifies a limit on the amount of time that the call should block if
the decrement cannot be immediately performed. The abs_timeout argu?
ment points to a structure that specifies an absolute timeout in sec?
onds and nanoseconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
This structure is defined as follows:
struct timespec {
time_ttv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds [0 .. 999999999] */
h
If the timeout has already expired by the time of the call, and the
semaphore could not be locked immediately, then sem_timedwait() fails
with a timeout error (errno set to ETIMEDOUT).
If the operation can be performed immediately, then sem_timedwait()
never fails with a timeout error, regardless of the value of abs_time?
out. Furthermore, the validity of abs_timeout is not checked in this
case.
RETURN VALUE
All of these functions return O on success; on error, the value of the
semaphore is left unchanged, -1 is returned, and errno is set to indi?
cate the error.
ERRORS

EINTR The call was interrupted by a signal handler; see signal(7).
EINVAL sem is not a valid semaphore.
The following additional error can occur for sem_trywait():
EAGAIN The operation could not be performed without blocking (i.e., the

semaphore currently has the value zero).
The following additional errors can occur for sem_timedwait():
EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater

than or equal to 1000 million. Page 2/5

ETIMEDOUT
The call timed out before the semaphore could be locked.
ATTRIBUTES
For an explanation of the terms used in this section, see at?

tributes(7).

PP 2?2??7?7?77??77?7??7?7?7?7?7?7?7?7?7?77?

?Interface ? Attribute ? Value ?

PP 7?7?77???7?7??7?7??7?7?27?7?777?77

?sem_wait(), sem_trywait(), ? Thread safety ? MT-Safe ?
?sem_timedwait() ? ? ?

PPV ??7???7???7???7??7?7?7??7??7?7?7

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
EXAMPLES

The (somewhat trivial) program shown below operates on an unnamed sema?
phore. The program expects two command-line arguments. The first ar?
gument specifies a seconds value that is used to set an alarm timer to
generate a SIGALRM signal. This handler performs a sem_post(3) to in?
crement the semaphore that is being waited on in main() using
sem_timedwait(). The second command-line argument specifies the length
of the timeout, in seconds, for sem_timedwait(). The following shows
what happens on two different runs of the program:

$.Jaout23

About to call sem_timedwait()

sem_post() from handler

sem_timedwait() succeeded

$.Jaout21

About to call sem_timedwait()

sem_timedwait() timed out

Program source

#include <unistd.h>
#include <stdio.h>

#include <stdlib.h> Page 3/5

#include <semaphore.h>
#include <time.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
sem_t sem;
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
static void
handler(int sig)
{
write(STDOUT_FILENO, "sem_post() from handler\n", 24);
if (sem_post(&sem) == -1) {
write(STDERR_FILENO, "sem_post() failed\n", 18);

_exit(EXIT_FAILURE);

int
main(int argc, char *argv[])
{
struct sigaction sa;
struct timespec ts;
ints;
if (argc 1= 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",
argv[0]);
exit(EXIT_FAILURE);
}
if (sem_init(&sem, 0, 0) == -1)
handle_error("sem_init");
/* Establish SIGALRM handler; set alarm timer using argv[1] */
sa.sa_handler = handler;

sigemptyset(&sa.sa_mask); Page 4/5

sa.sa_flags = 0;

if (sigaction(SIGALRM, &sa, NULL) == -1)

handle_error("sigaction™);

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus

number of seconds given argv[2] */

if (clock_gettime(CLOCK_REALTIME, &ts) == -1)

handle_error("clock_gettime");

ts.tv_sec += atoi(argv[2]);

printf("main() about to call sem_timedwait()\n");

while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

continue;

[* Restart if interrupted by handler */

/* Check what happened */

if (s == -1) {

if (errno == ETIMEDOUT)

printf("sem_timedwait() timed out\n");

else

perror("sem_timedwait");

} else

printf("sem_timedwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);

}
SEE ALSO

clock_gettime(2),
time(7)

COLOPHON

sem_getvalue(3), sem_post(3), sem_overview(7),

This page is part of release 5.10 of the Linux man-pages project. A

description of the project, information about reporting bugs, and the

latest version of this page, can be found at

https://www.kernel.org/doc/man-pages/.

Linux

2020-06-09 SEM_WAIT(3)

Page 5/5

