
Rocky Enterprise Linux 9.2 Manual Pages on command 'sem_overview.7'

$ man sem_overview.7

SEM_OVERVIEW(7) Linux Programmer's Manual SEM_OVERVIEW(7)

NAME

 sem_overview - overview of POSIX semaphores

DESCRIPTION

 POSIX semaphores allow processes and threads to synchronize their ac?

 tions.

 A semaphore is an integer whose value is never allowed to fall below

 zero. Two operations can be performed on semaphores: increment the

 semaphore value by one (sem_post(3)); and decrement the semaphore value

 by one (sem_wait(3)). If the value of a semaphore is currently zero,

 then a sem_wait(3) operation will block until the value becomes greater

 than zero.

 POSIX semaphores come in two forms: named semaphores and unnamed sema?

 phores.

 Named semaphores

 A named semaphore is identified by a name of the form /somename;

 that is, a null-terminated string of up to NAME_MAX-4 (i.e.,

 251) characters consisting of an initial slash, followed by one Page 1/3

 or more characters, none of which are slashes. Two processes

 can operate on the same named semaphore by passing the same name

 to sem_open(3).

 The sem_open(3) function creates a new named semaphore or opens

 an existing named semaphore. After the semaphore has been

 opened, it can be operated on using sem_post(3) and sem_wait(3).

 When a process has finished using the semaphore, it can use

 sem_close(3) to close the semaphore. When all processes have

 finished using the semaphore, it can be removed from the system

 using sem_unlink(3).

 Unnamed semaphores (memory-based semaphores)

 An unnamed semaphore does not have a name. Instead the sema?

 phore is placed in a region of memory that is shared between

 multiple threads (a thread-shared semaphore) or processes (a

 process-shared semaphore). A thread-shared semaphore is placed

 in an area of memory shared between the threads of a process,

 for example, a global variable. A process-shared semaphore must

 be placed in a shared memory region (e.g., a System V shared

 memory segment created using shmget(2), or a POSIX shared memory

 object built created using shm_open(3)).

 Before being used, an unnamed semaphore must be initialized us?

 ing sem_init(3). It can then be operated on using sem_post(3)

 and sem_wait(3). When the semaphore is no longer required, and

 before the memory in which it is located is deallocated, the

 semaphore should be destroyed using sem_destroy(3).

 The remainder of this section describes some specific details of the

 Linux implementation of POSIX semaphores.

 Versions

 Prior to kernel 2.6, Linux supported only unnamed, thread-shared sema?

 phores. On a system with Linux 2.6 and a glibc that provides the NPTL

 threading implementation, a complete implementation of POSIX semaphores

 is provided.

 Persistence Page 2/3

 POSIX named semaphores have kernel persistence: if not removed by

 sem_unlink(3), a semaphore will exist until the system is shut down.

 Linking

 Programs using the POSIX semaphores API must be compiled with cc

 -pthread to link against the real-time library, librt.

 Accessing named semaphores via the filesystem

 On Linux, named semaphores are created in a virtual filesystem, nor?

 mally mounted under /dev/shm, with names of the form sem.somename.

 (This is the reason that semaphore names are limited to NAME_MAX-4

 rather than NAME_MAX characters.)

 Since Linux 2.6.19, ACLs can be placed on files under this directory,

 to control object permissions on a per-user and per-group basis.

NOTES

 System V semaphores (semget(2), semop(2), etc.) are an older semaphore

 API. POSIX semaphores provide a simpler, and better designed interface

 than System V semaphores; on the other hand POSIX semaphores are less

 widely available (especially on older systems) than System V sema?

 phores.

EXAMPLES

 An example of the use of various POSIX semaphore functions is shown in

 sem_wait(3).

SEE ALSO

 sem_close(3), sem_destroy(3), sem_getvalue(3), sem_init(3),

 sem_open(3), sem_post(3), sem_unlink(3), sem_wait(3), pthreads(7),

 shm_overview(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SEM_OVERVIEW(7)

Page 3/3

