
Rocky Enterprise Linux 9.2 Manual Pages on command 'sched_setaffinity.2'

$ man sched_setaffinity.2

SCHED_SETAFFINITY(2)       Linux Programmer's Manual      SCHED_SETAFFINITY(2)

NAME

       sched_setaffinity,  sched_getaffinity  -  set  and  get  a thread's CPU

       affinity mask

SYNOPSIS

       #define _GNU_SOURCE             /* See feature_test_macros(7) */

       #include <sched.h>

       int sched_setaffinity(pid_t pid, size_t cpusetsize,

                             const cpu_set_t *mask);

       int sched_getaffinity(pid_t pid, size_t cpusetsize,

                             cpu_set_t *mask);

DESCRIPTION

       A thread's CPU affinity mask determines the set of CPUs on which it  is

       eligible  to run.  On a multiprocessor system, setting the CPU affinity

       mask can be used to obtain performance benefits.  For example, by dedi?

       cating  one CPU to a particular thread (i.e., setting the affinity mask

       of that thread to specify a single CPU, and setting the  affinity  mask

       of  all  other  threads  to exclude that CPU), it is possible to ensure Page 1/8



       maximum execution speed for that thread.  Restricting a thread  to  run

       on  a  single  CPU also avoids the performance cost caused by the cache

       invalidation that occurs when a thread ceases to execute on one CPU and

       then recommences execution on a different CPU.

       A  CPU  affinity mask is represented by the cpu_set_t structure, a "CPU

       set", pointed to by mask.  A set of macros for manipulating CPU sets is

       described in CPU_SET(3).

       sched_setaffinity()  sets  the CPU affinity mask of the thread whose ID

       is pid to the value specified by mask.  If pid is zero, then the  call?

       ing  thread  is used.  The argument cpusetsize is the length (in bytes)

       of the data pointed to by mask.  Normally this argument would be speci?

       fied as sizeof(cpu_set_t).

       If  the  thread specified by pid is not currently running on one of the

       CPUs specified in mask, then that thread is migrated to one of the CPUs

       specified in mask.

       sched_getaffinity()  writes the affinity mask of the thread whose ID is

       pid into the cpu_set_t structure pointed to by  mask.   The  cpusetsize

       argument  specifies  the size (in bytes) of mask.  If pid is zero, then

       the mask of the calling thread is returned.

RETURN VALUE

       On success, sched_setaffinity() and sched_getaffinity() return  0  (but

       see "C library/kernel differences" below, which notes that the underly?

       ing sched_getaffinity() differs in its return value).  On error, -1  is

       returned, and errno is set appropriately.

ERRORS

       EFAULT A supplied memory address was invalid.

       EINVAL The  affinity bit mask mask contains no processors that are cur?

              rently physically on the system and permitted to the thread  ac?

              cording  to  any  restrictions  that  may  be  imposed by cpuset

              cgroups or the "cpuset" mechanism described in cpuset(7).

       EINVAL (sched_getaffinity()   and,    in    kernels    before    2.6.9,

              sched_setaffinity())  cpusetsize is smaller than the size of the

              affinity mask used by the kernel. Page 2/8



       EPERM  (sched_setaffinity()) The calling thread does not have appropri?

              ate  privileges.  The caller needs an effective user ID equal to

              the real user ID or effective user ID of the  thread  identified

              by  pid,  or  it must possess the CAP_SYS_NICE capability in the

              user namespace of the thread pid.

       ESRCH  The thread whose ID is pid could not be found.

VERSIONS

       The CPU affinity system calls were introduced in  Linux  kernel  2.5.8.

       The  system call wrappers were introduced in glibc 2.3.  Initially, the

       glibc interfaces included a cpusetsize argument, typed as unsigned int.

       In  glibc  2.3.3, the cpusetsize argument was removed, but was then re?

       stored in glibc 2.3.4, with type size_t.

CONFORMING TO

       These system calls are Linux-specific.

NOTES

       After a call to sched_setaffinity(), the  set  of  CPUs  on  which  the

       thread  will  actually  run is the intersection of the set specified in

       the mask argument and the set of CPUs actually present on  the  system.

       The  system  may  further  restrict the set of CPUs on which the thread

       runs if the "cpuset" mechanism described in cpuset(7)  is  being  used.

       These  restrictions  on the actual set of CPUs on which the thread will

       run are silently imposed by the kernel.

       There are various ways of determining the number of CPUs  available  on

       the  system, including: inspecting the contents of /proc/cpuinfo; using

       sysconf(3)  to  obtain  the  values  of  the  _SC_NPROCESSORS_CONF  and

       _SC_NPROCESSORS_ONLN  parameters; and inspecting the list of CPU direc?

       tories under /sys/devices/system/cpu/.

       sched(7) has a description of the Linux scheduling scheme.

       The affinity mask is a per-thread attribute that can be adjusted  inde?

       pendently  for  each  of  the threads in a thread group.  The value re?

       turned from a call to gettid(2) can be  passed  in  the  argument  pid.

       Specifying  pid as 0 will set the attribute for the calling thread, and

       passing the value returned from a call to getpid(2) will set the attri? Page 3/8



       bute  for  the  main thread of the thread group.  (If you are using the

       POSIX  threads  API,  then  use  pthread_setaffinity_np(3)  instead  of

       sched_setaffinity().)

       The  isolcpus  boot  option  can be used to isolate one or more CPUs at

       boot time, so that no processes are scheduled onto those CPUs.  Follow?

       ing  the  use  of  this boot option, the only way to schedule processes

       onto the isolated CPUs is  via  sched_setaffinity()  or  the  cpuset(7)

       mechanism.   For  further information, see the kernel source file Docu?

       mentation/admin-guide/kernel-parameters.txt.  As noted  in  that  file,

       isolcpus  is  the preferred mechanism of isolating CPUs (versus the al?

       ternative of manually setting the CPU affinity of all processes on  the

       system).

       A  child  created  via fork(2) inherits its parent's CPU affinity mask.

       The affinity mask is preserved across an execve(2).

   C library/kernel differences

       This manual page describes the glibc interface  for  the  CPU  affinity

       calls.   The  actual  system call interface is slightly different, with

       the mask being typed as unsigned long *, reflecting the fact  that  the

       underlying implementation of CPU sets is a simple bit mask.

       On  success, the raw sched_getaffinity() system call returns the number

       of bytes placed copied into the mask buffer; this will be  the  minimum

       of  cpusetsize  and the size (in bytes) of the cpumask_t data type that

       is used internally by the kernel to represent the CPU set bit mask.

   Handling systems with large CPU affinity masks

       The underlying system calls (which represent CPU masks as bit masks  of

       type  unsigned  long *)  impose  no  restriction on the size of the CPU

       mask.  However, the cpu_set_t data type used by glibc has a fixed  size

       of  128  bytes,  meaning that the maximum CPU number that can be repre?

       sented is 1023.  If the kernel CPU affinity mask is larger  than  1024,

       then calls of the form:

           sched_getaffinity(pid, sizeof(cpu_set_t), &mask);

       fail with the error EINVAL, the error produced by the underlying system

       call for the case where  the  mask  size  specified  in  cpusetsize  is Page 4/8



       smaller  than  the  size of the affinity mask used by the kernel.  (De?

       pending on the system CPU topology, the kernel  affinity  mask  can  be

       substantially larger than the number of active CPUs in the system.)

       When  working on systems with large kernel CPU affinity masks, one must

       dynamically allocate the mask argument (see CPU_ALLOC(3)).   Currently,

       the only way to do this is by probing for the size of the required mask

       using sched_getaffinity() calls with increasing mask sizes  (until  the

       call does not fail with the error EINVAL).

       Be  aware that CPU_ALLOC(3) may allocate a slightly larger CPU set than

       requested (because CPU sets are implemented as bit masks  allocated  in

       units of sizeof(long)).  Consequently, sched_getaffinity() can set bits

       beyond the requested allocation size, because the kernel sees a few ad?

       ditional  bits.   Therefore, the caller should iterate over the bits in

       the returned set, counting those which are set, and stop upon  reaching

       the value returned by CPU_COUNT(3) (rather than iterating over the num?

       ber of bits requested to be allocated).

EXAMPLES

       The program below creates a child process.  The parent and  child  then

       each  assign  themselves to a specified CPU and execute identical loops

       that consume some CPU time.  Before terminating, the parent  waits  for

       the child to complete.  The program takes three command-line arguments:

       the CPU number for the parent, the CPU number for the  child,  and  the

       number of loop iterations that both processes should perform.

       As  the  sample runs below demonstrate, the amount of real and CPU time

       consumed when running the program will depend on intra-core caching ef?

       fects and whether the processes are using the same CPU.

       We  first  employ  lscpu(1) to determine that this (x86) system has two

       cores, each with two CPUs:

           $ lscpu | egrep -i 'core.*:|socket'

           Thread(s) per core:    2

           Core(s) per socket:    2

           Socket(s):             1

       We then time the operation of the example program for three cases: both Page 5/8



       processes  running on the same CPU; both processes running on different

       CPUs on the same core; and both processes running on different CPUs  on

       different cores.

           $ time -p ./a.out 0 0 100000000

           real 14.75

           user 3.02

           sys 11.73

           $ time -p ./a.out 0 1 100000000

           real 11.52

           user 3.98

           sys 19.06

           $ time -p ./a.out 0 3 100000000

           real 7.89

           user 3.29

           sys 12.07

   Program source

       #define _GNU_SOURCE

       #include <sched.h>

       #include <stdio.h>

       #include <stdlib.h>

       #include <unistd.h>

       #include <sys/wait.h>

       #define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \

                               } while (0)

       int

       main(int argc, char *argv[])

       {

           cpu_set_t set;

           int parentCPU, childCPU;

           int nloops;

           if (argc != 4) {

               fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n",

                       argv[0]); Page 6/8



               exit(EXIT_FAILURE);

           }

           parentCPU = atoi(argv[1]);

           childCPU = atoi(argv[2]);

           nloops = atoi(argv[3]);

           CPU_ZERO(&set);

           switch (fork()) {

           case -1:            /* Error */

               errExit("fork");

           case 0:             /* Child */

               CPU_SET(childCPU, &set);

               if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)

                   errExit("sched_setaffinity");

               for (int j = 0; j < nloops; j++)

                   getppid();

               exit(EXIT_SUCCESS);

           default:            /* Parent */

               CPU_SET(parentCPU, &set);

               if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)

                   errExit("sched_setaffinity");

               for (int j = 0; j < nloops; j++)

                   getppid();

               wait(NULL);     /* Wait for child to terminate */

               exit(EXIT_SUCCESS);

           }

       }

SEE ALSO

       lscpu(1), nproc(1), taskset(1), clone(2), getcpu(2), getpriority(2),

       gettid(2), nice(2), sched_get_priority_max(2),

       sched_get_priority_min(2), sched_getscheduler(2),

       sched_setscheduler(2), setpriority(2), CPU_SET(3), get_nprocs(3),

       pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7),

       sched(7), numactl(8) Page 7/8



COLOPHON

       This page is part of release 5.10 of the Linux man-pages project.  A

       description of the project, information about reporting bugs, and the

       latest version of this page, can be found at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-11-01              SCHED_SETAFFINITY(2)

Page 8/8


