
Rocky Enterprise Linux 9.2 Manual Pages on command 'rmic-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1'

$ man rmic-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

rmic(1) Remote Method Invocation (RMI) Tools rmic(1)

NAME

 rmic - Generates stub, skeleton, and tie classes for remote objects

 that use the Java Remote Method Protocol (JRMP) or Internet Inter-Orb

 protocol (IIOP). Also generates Object Management Group (OMG) Interface

 Definition Language (IDL)

SYNOPSIS

 rmic [options] package-qualified-class-names

 options

 The command-line options. See Options.

 package-qualified-class-names

 Class names that include their packages, for example,

 java.awt.Color.

DESCRIPTION

 Deprecation Note: Support for static generation of Java Remote Method

 Protocol (JRMP) stubs and skeletons has been deprecated. Oracle

 recommends that you use dynamically generated JRMP stubs instead,

 eliminating the need to use this tool for JRMP-based applications. See Page 1/7

 the java.rmi.server.UnicastRemoteObject specification at

 http://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html

 for further information.

 The rmic compiler generates stub and skeleton class files using the

 Java Remote Method Protocol (JRMP) and stub and tie class files (IIOP

 protocol) for remote objects. These class files are generated from

 compiled Java programming language classes that are remote object

 implementation classes. A remote implementation class is a class that

 implements the interface java.rmi.Remote. The class names in the rmic

 command must be for classes that were compiled successfully with the

 javac command and must be fully package qualified. For example, running

 the rmic command on the class file name HelloImpl as shown here creates

 the HelloImpl_Stub.classfile in the hello subdirectory (named for the

 class's package):

 rmic hello.HelloImpl

 A skeleton for a remote object is a JRMP protocol server-side entity

 that has a method that dispatches calls to the remote object

 implementation.

 A tie for a remote object is a server-side entity similar to a

 skeleton, but communicates with the client with the IIOP protocol.

 A stub is a client-side proxy for a remote object that is responsible

 for communicating method invocations on remote objects to the server

 where the actual remote object implementation resides. A client's

 reference to a remote object, therefore, is actually a reference to a

 local stub.

 By default, the rmic command generates stub classes that use the 1.2

 JRMP stub protocol version only, as though the -v1.2 option was

 specified. The -vcompat option was the default in releases before 5.0.

 Use the -iiop option to generate stub and tie classes for the IIOP

 protocol. See Options.

 A stub implements only the remote interfaces, and not any local

 interfaces that the remote object also implements. Because a JRMP stub

 implements the same set of remote interfaces as the remote object, a Page 2/7

 client can use the Java programming language built-in operators for

 casting and type checking. For IIOP, the PortableRemoteObject.narrow

 method must be used.

OPTIONS

 -bootclasspath path

 Overrides the location of bootstrap class files.

 -classpath path

 Specifies the path the rmic command uses to look up classes.

 This option overrides the default or the CLASSPATH environment

 variable when it is set. Directories are separated by colons.

 The general format for path is: .:<your_path>, for example:

 .:/usr/local/java/classes.

 -d directory

 Specifies the root destination directory for the generated class

 hierarchy. You can use this option to specify a destination

 directory for the stub, skeleton, and tie files. For example,

 the following command places the stub and skeleton classes

 derived from MyClass into the directory

 /java/classes/exampleclass.

 rmic -d /java/classes exampleclass.MyClass

 If the -d option is not specified, then the default behavior is

 as if -d . was specified. The package hierarchy of the target

 class is created in the current directory, and stub/tie/skeleton

 files are placed within it. In some earlier releases of the rmic

 command, if the -d option was not specified, then the package

 hierarchy was not created, and all of the output files were

 placed directly in the current directory.

 -extdirs path

 Overrides the location of installed extensions.

 -g

 Enables the generation of all debugging information, including

 local variables. By default, only line number information is

 generated. Page 3/7

 -idl

 Causes the rmic command to generate OMG IDL for the classes

 specified and any classes referenced. IDL provides a purely

 declarative, programming language-independent way to specify an

 API for an object. The IDL is used as a specification for

 methods and data that can be written in and called from any

 language that provides CORBA bindings. This includes Java and

 C++ among others. See Java IDL: IDL to Java Language Mapping at

 http://docs.oracle.com/javase/8/docs/technotes/guides/idl/mapping/jidlMapping.html

 When the -idl option is used, other options also include:

 ? The -always or -alwaysgenerate options force regeneration even

 when existing stubs/ties/IDL are newer than the input class.

 ? The -factory option uses the factory keyword in generated IDL.

 ? The -idlModule from JavaPackage[.class]toIDLModule specifies

 IDLEntity package mapping, for example: -idlModulemy.module

 my::real::idlmod.

 ? -idlFilefromJavaPackage[.class] toIDLFile specifies IDLEntity

 file mapping, for example: -idlFile test.pkg.X TEST16.idl.

 -iiop

 Causes the rmic command to generate IIOP stub and tie classes,

 rather than JRMP stub and skeleton classes. A stub class is a

 local proxy for a remote object and is used by clients to send

 calls to a server. Each remote interface requires a stub class,

 which implements that remote interface. A client reference to a

 remote object is a reference to a stub. Tie classes are used on

 the server side to process incoming calls, and dispatch the

 calls to the proper implementation class. Each implementation

 class requires a tie class.

 If you call the rmic command with the -iiop, then it generates

 stubs and ties that conform to this naming convention:

 _<implementationName>_stub.class

 _<interfaceName>_tie.class

 ? When you use the -iiop option, other options also include: Page 4/7

 ? The -always or -alwaysgenerate options force regeneration even

 when existing stubs/ties/IDL are newer than the input class.

 ? The -nolocalstubs option means do not create stubs optimized

 for same-process clients and servers.

 ? The -noValueMethods option must be used with the -idl option.

 The -noValueMethods option prevents the addition of valuetype

 methods and initializers to emitted IDL. These methods and

 initializers are optional for valuetypes, and are generated

 unless the -noValueMethods option is specified with the -idl

 option.

 ? The -poa option changes the inheritance from

 org.omg.CORBA_2_3.portable.ObjectImpl to

 org.omg.PortableServer.Servant. The PortableServer module for

 the Portable Object Adapter (POA) defines the native Servant

 type. In the Java programming language, the Servant type is

 mapped to the Java org.omg.PortableServer.Servant class. It

 serves as the base class for all POA servant implementations

 and provides a number of methods that can be called by the

 application programmer, and methods that are called by the POA

 and that can be overridden by the user to control aspects of

 servant behavior. Based on the OMG IDL to Java Language

 Mapping Specification, CORBA V 2.3.1 ptc/00-01-08.pdf..RE

 -J

 Used with any Java command, the -J option passes the argument

 that follows the -J (no spaces between the -Jand the argument)

 to the Java interpreter

 -keep or -keepgenerated

 Retains the generated .java source files for the stub,

 skeleton, and tie classes and writes them to the same

 directory as the.class files.

 -nowarn

 Turns off warnings. When the -nowarn options is used. The

 compiler does not print out any warnings. Page 5/7

 -nowrite

 Does not write compiled classes to the file system.

 -vcompat (deprecated)

 Generates stub and skeleton classes that are compatible with

 both the 1.1 and 1.2 JRMP stub protocol versions. This option

 was the default in releases before 5.0. The generated stub

 classes use the 1.1 stub protocol version when loaded in a JDK

 1.1 virtual machine and use the 1.2 stub protocol version when

 loaded into a 1.2 (or later) virtual machine. The generated

 skeleton classes support both 1.1 and 1.2 stub protocol

 versions. The generated classes are relatively large to

 support both modes of operation. Note: This option has been

 deprecated. See Description.

 -verbose

 Causes the compiler and linker to print out messages about

 what classes are being compiled and what class files are being

 loaded.

 -v1.1 (deprecated)

 Generates stub and skeleton classes for the 1.1 JRMP stub

 protocol version only. The -v1.1 option is only useful for

 generating stub classes that are serialization-compatible with

 preexisting, statically deployed stub classes that were

 generated by the rmic command from JDK 1.1 and that cannot be

 upgraded (and dynamic class loading is not being used). Note:

 This option has been deprecated. See Description.

 -v1.2 (deprecated)

 (Default) Generates stub classes for the 1.2 JRMP stub

 protocol version only. No skeleton classes are generated

 because skeleton classes are not used with the 1.2 stub

 protocol version. The generated stub classes do not work when

 they are loaded into a JDK 1.1 virtual machine. Note: This

 option has been deprecated. See Description.

ENVIRONMENT VARIABLES Page 6/7

 CLASSPATH

 Used to provide the system a path to user-defined classes.

 Directories are separated by colons, for example:

 .:/usr/local/java/classes.

SEE ALSO

 ? javac(1)

 ? java(1)

 ? Setting the Class Path

JDK 8 21 November 2013 rmic(1)

Page 7/7

