
Rocky Enterprise Linux 9.2 Manual Pages on command 'rename.2'

$ man rename.2

RENAME(2) Linux Programmer's Manual RENAME(2)

NAME

 rename, renameat, renameat2 - change the name or location of a file

SYNOPSIS

 #include <stdio.h>

 int rename(const char *oldpath, const char *newpath);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <stdio.h>

 int renameat(int olddirfd, const char *oldpath,

 int newdirfd, const char *newpath);

 int renameat2(int olddirfd, const char *oldpath,

 int newdirfd, const char *newpath, unsigned int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 renameat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE Page 1/8

 renameat2():

 _GNU_SOURCE

DESCRIPTION

 rename() renames a file, moving it between directories if required.

 Any other hard links to the file (as created using link(2)) are unaf?

 fected. Open file descriptors for oldpath are also unaffected.

 Various restrictions determine whether or not the rename operation suc?

 ceeds: see ERRORS below.

 If newpath already exists, it will be atomically replaced, so that

 there is no point at which another process attempting to access newpath

 will find it missing. However, there will probably be a window in

 which both oldpath and newpath refer to the file being renamed.

 If oldpath and newpath are existing hard links referring to the same

 file, then rename() does nothing, and returns a success status.

 If newpath exists but the operation fails for some reason, rename()

 guarantees to leave an instance of newpath in place.

 oldpath can specify a directory. In this case, newpath must either not

 exist, or it must specify an empty directory.

 If oldpath refers to a symbolic link, the link is renamed; if newpath

 refers to a symbolic link, the link will be overwritten.

 renameat()

 The renameat() system call operates in exactly the same way as re?

 name(), except for the differences described here.

 If the pathname given in oldpath is relative, then it is interpreted

 relative to the directory referred to by the file descriptor olddirfd

 (rather than relative to the current working directory of the calling

 process, as is done by rename() for a relative pathname).

 If oldpath is relative and olddirfd is the special value AT_FDCWD, then

 oldpath is interpreted relative to the current working directory of the

 calling process (like rename()).

 If oldpath is absolute, then olddirfd is ignored.

 The interpretation of newpath is as for oldpath, except that a relative

 pathname is interpreted relative to the directory referred to by the Page 2/8

 file descriptor newdirfd.

 See openat(2) for an explanation of the need for renameat().

 renameat2()

 renameat2() has an additional flags argument. A renameat2() call with

 a zero flags argument is equivalent to renameat().

 The flags argument is a bit mask consisting of zero or more of the fol?

 lowing flags:

 RENAME_EXCHANGE

 Atomically exchange oldpath and newpath. Both pathnames must

 exist but may be of different types (e.g., one could be a non-

 empty directory and the other a symbolic link).

 RENAME_NOREPLACE

 Don't overwrite newpath of the rename. Return an error if new?

 path already exists.

 RENAME_NOREPLACE can't be employed together with RENAME_EX?

 CHANGE.

 RENAME_NOREPLACE requires support from the underlying filesys?

 tem. Support for various filesystems was added as follows:

 * ext4 (Linux 3.15);

 * btrfs, shmem, and cifs (Linux 3.17);

 * xfs (Linux 4.0);

 * Support for many other filesystems was added in Linux 4.9,

 including ext2, minix, reiserfs, jfs, vfat, and bpf.

 RENAME_WHITEOUT (since Linux 3.18)

 This operation makes sense only for overlay/union filesystem im?

 plementations.

 Specifying RENAME_WHITEOUT creates a "whiteout" object at the

 source of the rename at the same time as performing the rename.

 The whole operation is atomic, so that if the rename succeeds

 then the whiteout will also have been created.

 A "whiteout" is an object that has special meaning in

 union/overlay filesystem constructs. In these constructs, mul?

 tiple layers exist and only the top one is ever modified. A Page 3/8

 whiteout on an upper layer will effectively hide a matching file

 in the lower layer, making it appear as if the file didn't ex?

 ist.

 When a file that exists on the lower layer is renamed, the file

 is first copied up (if not already on the upper layer) and then

 renamed on the upper, read-write layer. At the same time, the

 source file needs to be "whiteouted" (so that the version of the

 source file in the lower layer is rendered invisible). The

 whole operation needs to be done atomically.

 When not part of a union/overlay, the whiteout appears as a

 character device with a {0,0} device number. (Note that other

 union/overlay implementations may employ different methods for

 storing whiteout entries; specifically, BSD union mount employs

 a separate inode type, DT_WHT, which, while supported by some

 filesystems available in Linux, such as CODA and XFS, is ignored

 by the kernel's whiteout support code, as of Linux 4.19, at

 least.)

 RENAME_WHITEOUT requires the same privileges as creating a de?

 vice node (i.e., the CAP_MKNOD capability).

 RENAME_WHITEOUT can't be employed together with RENAME_EXCHANGE.

 RENAME_WHITEOUT requires support from the underlying filesystem.

 Among the filesystems that provide that support are tmpfs (since

 Linux 3.18), ext4 (since Linux 3.18), XFS (since Linux 4.1),

 f2fs (since Linux 4.2), btrfs (since Linux 4.7), and ubifs

 (since Linux 4.9).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 EACCES Write permission is denied for the directory containing oldpath

 or newpath, or, search permission is denied for one of the di?

 rectories in the path prefix of oldpath or newpath, or oldpath

 is a directory and does not allow write permission (needed to Page 4/8

 update the .. entry). (See also path_resolution(7).)

 EBUSY The rename fails because oldpath or newpath is a directory that

 is in use by some process (perhaps as current working directory,

 or as root directory, or because it was open for reading) or is

 in use by the system (for example as mount point), while the

 system considers this an error. (Note that there is no require?

 ment to return EBUSY in such cases?there is nothing wrong with

 doing the rename anyway?but it is allowed to return EBUSY if the

 system cannot otherwise handle such situations.)

 EDQUOT The user's quota of disk blocks on the filesystem has been ex?

 hausted.

 EFAULT oldpath or newpath points outside your accessible address space.

 EINVAL The new pathname contained a path prefix of the old, or, more

 generally, an attempt was made to make a directory a subdirec?

 tory of itself.

 EISDIR newpath is an existing directory, but oldpath is not a direc?

 tory.

 ELOOP Too many symbolic links were encountered in resolving oldpath or

 newpath.

 EMLINK oldpath already has the maximum number of links to it, or it was

 a directory and the directory containing newpath has the maximum

 number of links.

 ENAMETOOLONG

 oldpath or newpath was too long.

 ENOENT The link named by oldpath does not exist; or, a directory compo?

 nent in newpath does not exist; or, oldpath or newpath is an

 empty string.

 ENOMEM Insufficient kernel memory was available.

 ENOSPC The device containing the file has no room for the new directory

 entry.

 ENOTDIR

 A component used as a directory in oldpath or newpath is not, in

 fact, a directory. Or, oldpath is a directory, and newpath ex? Page 5/8

 ists but is not a directory.

 ENOTEMPTY or EEXIST

 newpath is a nonempty directory, that is, contains entries other

 than "." and "..".

 EPERM or EACCES

 The directory containing oldpath has the sticky bit (S_ISVTX)

 set and the process's effective user ID is neither the user ID

 of the file to be deleted nor that of the directory containing

 it, and the process is not privileged (Linux: does not have the

 CAP_FOWNER capability); or newpath is an existing file and the

 directory containing it has the sticky bit set and the process's

 effective user ID is neither the user ID of the file to be re?

 placed nor that of the directory containing it, and the process

 is not privileged (Linux: does not have the CAP_FOWNER capabil?

 ity); or the filesystem containing pathname does not support re?

 naming of the type requested.

 EROFS The file is on a read-only filesystem.

 EXDEV oldpath and newpath are not on the same mounted filesystem.

 (Linux permits a filesystem to be mounted at multiple points,

 but rename() does not work across different mount points, even

 if the same filesystem is mounted on both.)

 The following additional errors can occur for renameat() and re?

 nameat2():

 EBADF olddirfd or newdirfd is not a valid file descriptor.

 ENOTDIR

 oldpath is relative and olddirfd is a file descriptor referring

 to a file other than a directory; or similar for newpath and

 newdirfd

 The following additional errors can occur for renameat2():

 EEXIST flags contains RENAME_NOREPLACE and newpath already exists.

 EINVAL An invalid flag was specified in flags.

 EINVAL Both RENAME_NOREPLACE and RENAME_EXCHANGE were specified in

 flags. Page 6/8

 EINVAL Both RENAME_WHITEOUT and RENAME_EXCHANGE were specified in

 flags.

 EINVAL The filesystem does not support one of the flags in flags.

 ENOENT flags contains RENAME_EXCHANGE and newpath does not exist.

 EPERM RENAME_WHITEOUT was specified in flags, but the caller does not

 have the CAP_MKNOD capability.

VERSIONS

 renameat() was added to Linux in kernel 2.6.16; library support was

 added to glibc in version 2.4.

 renameat2() was added to Linux in kernel 3.15; library support was

 added in glibc 2.28.

CONFORMING TO

 rename(): 4.3BSD, C89, C99, POSIX.1-2001, POSIX.1-2008.

 renameat(): POSIX.1-2008.

 renameat2() is Linux-specific.

NOTES

 Glibc notes

 On older kernels where renameat() is unavailable, the glibc wrapper

 function falls back to the use of rename(). When oldpath and newpath

 are relative pathnames, glibc constructs pathnames based on the sym?

 bolic links in /proc/self/fd that correspond to the olddirfd and

 newdirfd arguments.

BUGS

 On NFS filesystems, you can not assume that if the operation failed,

 the file was not renamed. If the server does the rename operation and

 then crashes, the retransmitted RPC which will be processed when the

 server is up again causes a failure. The application is expected to

 deal with this. See link(2) for a similar problem.

SEE ALSO

 mv(1), rename(1), chmod(2), link(2), symlink(2), unlink(2), path_reso?

 lution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 7/8

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 RENAME(2)

Page 8/8

