
Rocky Enterprise Linux 9.2 Manual Pages on command 'random.7'

$ man random.7

RANDOM(7) Linux Programmer's Manual RANDOM(7)

NAME

 random - overview of interfaces for obtaining randomness

DESCRIPTION

 The kernel random-number generator relies on entropy gathered from de?

 vice drivers and other sources of environmental noise to seed a crypto?

 graphically secure pseudorandom number generator (CSPRNG). It is de?

 signed for security, rather than speed.

 The following interfaces provide access to output from the kernel

 CSPRNG:

 * The /dev/urandom and /dev/random devices, both described in ran?

 dom(4). These devices have been present on Linux since early times,

 and are also available on many other systems.

 * The Linux-specific getrandom(2) system call, available since Linux

 3.17. This system call provides access either to the same source as

 /dev/urandom (called the urandom source in this page) or to the same

 source as /dev/random (called the random source in this page). The

 default is the urandom source; the random source is selected by Page 1/4

 specifying the GRND_RANDOM flag to the system call. (The geten?

 tropy(3) function provides a slightly more portable interface on top

 of getrandom(2).)

 Initialization of the entropy pool

 The kernel collects bits of entropy from the environment. When a suf?

 ficient number of random bits has been collected, the entropy pool is

 considered to be initialized.

 Choice of random source

 Unless you are doing long-term key generation (and most likely not even

 then), you probably shouldn't be reading from the /dev/random device or

 employing getrandom(2) with the GRND_RANDOM flag. Instead, either read

 from the /dev/urandom device or employ getrandom(2) without the

 GRND_RANDOM flag. The cryptographic algorithms used for the urandom

 source are quite conservative, and so should be sufficient for all pur?

 poses.

 The disadvantage of GRND_RANDOM and reads from /dev/random is that the

 operation can block for an indefinite period of time. Furthermore,

 dealing with the partially fulfilled requests that can occur when using

 GRND_RANDOM or when reading from /dev/random increases code complexity.

 Monte Carlo and other probabilistic sampling applications

 Using these interfaces to provide large quantities of data for Monte

 Carlo simulations or other programs/algorithms which are doing proba?

 bilistic sampling will be slow. Furthermore, it is unnecessary, be?

 cause such applications do not need cryptographically secure random

 numbers. Instead, use the interfaces described in this page to obtain

 a small amount of data to seed a user-space pseudorandom number genera?

 tor for use by such applications.

 Comparison between getrandom, /dev/urandom, and /dev/random

 The following table summarizes the behavior of the various interfaces

 that can be used to obtain randomness. GRND_NONBLOCK is a flag that

 can be used to control the blocking behavior of getrandom(2). The fi?

 nal column of the table considers the case that can occur in early boot

 time when the entropy pool is not yet initialized. Page 2/4

 ???

 ?Interface ? Pool ? Blocking ? Behavior when pool ?

 ? ? ? behavior ? is not yet ready ?

 ???

 ?/dev/random ? Blocking ? If entropy too ? Blocks until ?

 ? ? pool ? low, blocks ? enough entropy ?

 ? ? ? until there is ? gathered ?

 ? ? ? enough entropy ? ?

 ? ? ? again ? ?

 ???

 ?/dev/urandom ? CSPRNG out? ? Never blocks ? Returns output ?

 ? ? put ? ? from uninitialized ?

 ? ? ? ? CSPRNG (may be low ?

 ? ? ? ? entropy and un? ?

 ? ? ? ? suitable for cryp? ?

 ? ? ? ? tography) ?

 ???

 ?getrandom() ? Same as ? Does not block ? Blocks until pool ?

 ? ? /dev/urandom ? once is pool ? ready ?

 ? ? ? ready ? ?

 ???

 ?getrandom() ? Same as ? If entropy too ? Blocks until pool ?

 ?GRND_RANDOM ? /dev/random ? low, blocks ? ready ?

 ? ? ? until there is ? ?

 ? ? ? enough entropy ? ?

 ? ? ? again ? ?

 ???

 ?getrandom() ? Same as ? Does not block ? EAGAIN ?

 ?GRND_NONBLOCK ? /dev/urandom ? once is pool ? ?

 ? ? ? ready ? ?

 ???

 ?getrandom() ? Same as ? EAGAIN if not ? EAGAIN ?

 ?GRND_RANDOM + ? /dev/random ? enough entropy ? ? Page 3/4

 ?GRND_NONBLOCK ? ? available ? ?

 ???

 Generating cryptographic keys

 The amount of seed material required to generate a cryptographic key

 equals the effective key size of the key. For example, a 3072-bit RSA

 or Diffie-Hellman private key has an effective key size of 128 bits (it

 requires about 2^128 operations to break) so a key generator needs only

 128 bits (16 bytes) of seed material from /dev/random.

 While some safety margin above that minimum is reasonable, as a guard

 against flaws in the CSPRNG algorithm, no cryptographic primitive

 available today can hope to promise more than 256 bits of security, so

 if any program reads more than 256 bits (32 bytes) from the kernel ran?

 dom pool per invocation, or per reasonable reseed interval (not less

 than one minute), that should be taken as a sign that its cryptography

 is not skillfully implemented.

SEE ALSO

 getrandom(2), getauxval(3), getentropy(3), random(4), urandom(4), sig?

 nal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-03-13 RANDOM(7)

Page 4/4

