
Rocky Enterprise Linux 9.2 Manual Pages on command 'random.4'

$ man random.4

RANDOM(4) Linux Programmer's Manual RANDOM(4)

NAME

 random, urandom - kernel random number source devices

SYNOPSIS

 #include <linux/random.h>

 int ioctl(fd, RNDrequest, param);

DESCRIPTION

 The character special files /dev/random and /dev/urandom (present since

 Linux 1.3.30) provide an interface to the kernel's random number gener?

 ator. The file /dev/random has major device number 1 and minor device

 number 8. The file /dev/urandom has major device number 1 and minor

 device number 9.

 The random number generator gathers environmental noise from device

 drivers and other sources into an entropy pool. The generator also

 keeps an estimate of the number of bits of noise in the entropy pool.

 From this entropy pool, random numbers are created.

 Linux 3.17 and later provides the simpler and safer getrandom(2) inter?

 face which requires no special files; see the getrandom(2) manual page Page 1/7

 for details.

 When read, the /dev/urandom device returns random bytes using a pseudo?

 random number generator seeded from the entropy pool. Reads from this

 device do not block (i.e., the CPU is not yielded), but can incur an

 appreciable delay when requesting large amounts of data.

 When read during early boot time, /dev/urandom may return data prior to

 the entropy pool being initialized. If this is of concern in your ap?

 plication, use getrandom(2) or /dev/random instead.

 The /dev/random device is a legacy interface which dates back to a time

 where the cryptographic primitives used in the implementation of

 /dev/urandom were not widely trusted. It will return random bytes only

 within the estimated number of bits of fresh noise in the entropy pool,

 blocking if necessary. /dev/random is suitable for applications that

 need high quality randomness, and can afford indeterminate delays.

 When the entropy pool is empty, reads from /dev/random will block until

 additional environmental noise is gathered. If open(2) is called for

 /dev/random with the O_NONBLOCK flag, a subsequent read(2) will not

 block if the requested number of bytes is not available. Instead, the

 available bytes are returned. If no byte is available, read(2) will

 return -1 and errno will be set to EAGAIN.

 The O_NONBLOCK flag has no effect when opening /dev/urandom. When

 calling read(2) for the device /dev/urandom, reads of up to 256 bytes

 will return as many bytes as are requested and will not be interrupted

 by a signal handler. Reads with a buffer over this limit may return

 less than the requested number of bytes or fail with the error EINTR,

 if interrupted by a signal handler.

 Since Linux 3.16, a read(2) from /dev/urandom will return at most

 32 MB. A read(2) from /dev/random will return at most 512 bytes (340

 bytes on Linux kernels before version 2.6.12).

 Writing to /dev/random or /dev/urandom will update the entropy pool

 with the data written, but this will not result in a higher entropy

 count. This means that it will impact the contents read from both

 files, but it will not make reads from /dev/random faster. Page 2/7

 Usage

 The /dev/random interface is considered a legacy interface, and

 /dev/urandom is preferred and sufficient in all use cases, with the ex?

 ception of applications which require randomness during early boot

 time; for these applications, getrandom(2) must be used instead, be?

 cause it will block until the entropy pool is initialized.

 If a seed file is saved across reboots as recommended below, the output

 is cryptographically secure against attackers without local root access

 as soon as it is reloaded in the boot sequence, and perfectly adequate

 for network encryption session keys. (All major Linux distributions

 have saved the seed file across reboots since 2000 at least.) Since

 reads from /dev/random may block, users will usually want to open it in

 nonblocking mode (or perform a read with timeout), and provide some

 sort of user notification if the desired entropy is not immediately

 available.

 Configuration

 If your system does not have /dev/random and /dev/urandom created al?

 ready, they can be created with the following commands:

 mknod -m 666 /dev/random c 1 8

 mknod -m 666 /dev/urandom c 1 9

 chown root:root /dev/random /dev/urandom

 When a Linux system starts up without much operator interaction, the

 entropy pool may be in a fairly predictable state. This reduces the

 actual amount of noise in the entropy pool below the estimate. In or?

 der to counteract this effect, it helps to carry entropy pool informa?

 tion across shut-downs and start-ups. To do this, add the lines to an

 appropriate script which is run during the Linux system start-up se?

 quence:

 echo "Initializing random number generator..."

 random_seed=/var/run/random-seed

 # Carry a random seed from start-up to start-up

 # Load and then save the whole entropy pool

 if [-f $random_seed]; then Page 3/7

 cat $random_seed >/dev/urandom

 else

 touch $random_seed

 fi

 chmod 600 $random_seed

 poolfile=/proc/sys/kernel/random/poolsize

 [-r $poolfile] && bits=$(cat $poolfile) || bits=4096

 bytes=$(expr $bits / 8)

 dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

 Also, add the following lines in an appropriate script which is run

 during the Linux system shutdown:

 # Carry a random seed from shut-down to start-up

 # Save the whole entropy pool

 echo "Saving random seed..."

 random_seed=/var/run/random-seed

 touch $random_seed

 chmod 600 $random_seed

 poolfile=/proc/sys/kernel/random/poolsize

 [-r $poolfile] && bits=$(cat $poolfile) || bits=4096

 bytes=$(expr $bits / 8)

 dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

 In the above examples, we assume Linux 2.6.0 or later, where

 /proc/sys/kernel/random/poolsize returns the size of the entropy pool

 in bits (see below).

 /proc interfaces

 The files in the directory /proc/sys/kernel/random (present since

 2.3.16) provide additional information about the /dev/random device:

 entropy_avail

 This read-only file gives the available entropy, in bits. This

 will be a number in the range 0 to 4096.

 poolsize

 This file gives the size of the entropy pool. The semantics of

 this file vary across kernel versions: Page 4/7

 Linux 2.4:

 This file gives the size of the entropy pool in bytes.

 Normally, this file will have the value 512, but it is

 writable, and can be changed to any value for which an

 algorithm is available. The choices are 32, 64, 128,

 256, 512, 1024, or 2048.

 Linux 2.6 and later:

 This file is read-only, and gives the size of the entropy

 pool in bits. It contains the value 4096.

 read_wakeup_threshold

 This file contains the number of bits of entropy required for

 waking up processes that sleep waiting for entropy from

 /dev/random. The default is 64.

 write_wakeup_threshold

 This file contains the number of bits of entropy below which we

 wake up processes that do a select(2) or poll(2) for write ac?

 cess to /dev/random. These values can be changed by writing to

 the files.

 uuid and boot_id

 These read-only files contain random strings like

 6fd5a44b-35f4-4ad4-a9b9-6b9be13e1fe9. The former is generated

 afresh for each read, the latter was generated once.

 ioctl(2) interface

 The following ioctl(2) requests are defined on file descriptors con?

 nected to either /dev/random or /dev/urandom. All requests performed

 will interact with the input entropy pool impacting both /dev/random

 and /dev/urandom. The CAP_SYS_ADMIN capability is required for all re?

 quests except RNDGETENTCNT.

 RNDGETENTCNT

 Retrieve the entropy count of the input pool, the contents will

 be the same as the entropy_avail file under proc. The result

 will be stored in the int pointed to by the argument.

 RNDADDTOENTCNT Page 5/7

 Increment or decrement the entropy count of the input pool by

 the value pointed to by the argument.

 RNDGETPOOL

 Removed in Linux 2.6.9.

 RNDADDENTROPY

 Add some additional entropy to the input pool, incrementing the

 entropy count. This differs from writing to /dev/random or

 /dev/urandom, which only adds some data but does not increment

 the entropy count. The following structure is used:

 struct rand_pool_info {

 int entropy_count;

 int buf_size;

 __u32 buf[0];

 };

 Here entropy_count is the value added to (or subtracted from)

 the entropy count, and buf is the buffer of size buf_size which

 gets added to the entropy pool.

 RNDZAPENTCNT, RNDCLEARPOOL

 Zero the entropy count of all pools and add some system data

 (such as wall clock) to the pools.

FILES

 /dev/random

 /dev/urandom

NOTES

 For an overview and comparison of the various interfaces that can be

 used to obtain randomness, see random(7).

BUGS

 During early boot time, reads from /dev/urandom may return data prior

 to the entropy pool being initialized.

SEE ALSO

 mknod(1), getrandom(2), random(7)

 RFC 1750, "Randomness Recommendations for Security"

COLOPHON Page 6/7

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 RANDOM(4)

Page 7/7

