
Rocky Enterprise Linux 9.2 Manual Pages on command 'quotactl.2'

$ man quotactl.2

QUOTACTL(2) Linux Programmer's Manual QUOTACTL(2)

NAME

 quotactl - manipulate disk quotas

SYNOPSIS

 #include <sys/quota.h>

 #include <xfs/xqm.h> /* for XFS quotas */

 int quotactl(int cmd, const char *special, int id, caddr_t addr);

DESCRIPTION

 The quota system can be used to set per-user, per-group, and per-

 project limits on the amount of disk space used on a filesystem. For

 each user and/or group, a soft limit and a hard limit can be set for

 each filesystem. The hard limit can't be exceeded. The soft limit can

 be exceeded, but warnings will ensue. Moreover, the user can't exceed

 the soft limit for more than grace period duration (one week by de?

 fault) at a time; after this, the soft limit counts as a hard limit.

 The quotactl() call manipulates disk quotas. The cmd argument indi?

 cates a command to be applied to the user or group ID specified in id.

 To initialize the cmd argument, use the QCMD(subcmd, type) macro. The Page 1/13

 type value is either USRQUOTA, for user quotas, GRPQUOTA, for group

 quotas, or (since Linux 4.1) PRJQUOTA, for project quotas. The subcmd

 value is described below.

 The special argument is a pointer to a null-terminated string contain?

 ing the pathname of the (mounted) block special device for the filesys?

 tem being manipulated.

 The addr argument is the address of an optional, command-specific, data

 structure that is copied in or out of the system. The interpretation

 of addr is given with each operation below.

 The subcmd value is one of the following operations:

 Q_QUOTAON

 Turn on quotas for a filesystem. The id argument is the identi?

 fication number of the quota format to be used. Currently,

 there are three supported quota formats:

 QFMT_VFS_OLD The original quota format.

 QFMT_VFS_V0 The standard VFS v0 quota format, which can handle

 32-bit UIDs and GIDs and quota limits up to 2^42

 bytes and 2^32 inodes.

 QFMT_VFS_V1 A quota format that can handle 32-bit UIDs and GIDs

 and quota limits of 2^64 bytes and 2^64 inodes.

 The addr argument points to the pathname of a file containing

 the quotas for the filesystem. The quota file must exist; it is

 normally created with the quotacheck(8) program

 Quota information can be also stored in hidden system inodes for

 ext4, XFS, and other filesystems if the filesystem is configured

 so. In this case, there are no visible quota files and there is

 no need to use quotacheck(8). Quota information is always kept

 consistent by the filesystem and the Q_QUOTAON operation serves

 only to enable enforcement of quota limits. The presence of

 hidden system inodes with quota information is indicated by the

 DQF_SYS_FILE flag in the dqi_flags field returned by the Q_GET?

 INFO operation.

 This operation requires privilege (CAP_SYS_ADMIN). Page 2/13

 Q_QUOTAOFF

 Turn off quotas for a filesystem. The addr and id arguments are

 ignored. This operation requires privilege (CAP_SYS_ADMIN).

 Q_GETQUOTA

 Get disk quota limits and current usage for user or group id.

 The addr argument is a pointer to a dqblk structure defined in

 <sys/quota.h> as follows:

 /* uint64_t is an unsigned 64-bit integer;

 uint32_t is an unsigned 32-bit integer */

 struct dqblk { /* Definition since Linux 2.4.22 */

 uint64_t dqb_bhardlimit; /* Absolute limit on disk

 quota blocks alloc */

 uint64_t dqb_bsoftlimit; /* Preferred limit on

 disk quota blocks */

 uint64_t dqb_curspace; /* Current occupied space

 (in bytes) */

 uint64_t dqb_ihardlimit; /* Maximum number of

 allocated inodes */

 uint64_t dqb_isoftlimit; /* Preferred inode limit */

 uint64_t dqb_curinodes; /* Current number of

 allocated inodes */

 uint64_t dqb_btime; /* Time limit for excessive

 disk use */

 uint64_t dqb_itime; /* Time limit for excessive

 files */

 uint32_t dqb_valid; /* Bit mask of QIF_*

 constants */

 };

 /* Flags in dqb_valid that indicate which fields in

 dqblk structure are valid. */

 #define QIF_BLIMITS 1

 #define QIF_SPACE 2

 #define QIF_ILIMITS 4 Page 3/13

 #define QIF_INODES 8

 #define QIF_BTIME 16

 #define QIF_ITIME 32

 #define QIF_LIMITS (QIF_BLIMITS | QIF_ILIMITS)

 #define QIF_USAGE (QIF_SPACE | QIF_INODES)

 #define QIF_TIMES (QIF_BTIME | QIF_ITIME)

 #define QIF_ALL (QIF_LIMITS | QIF_USAGE | QIF_TIMES)

 The dqb_valid field is a bit mask that is set to indicate the

 entries in the dqblk structure that are valid. Currently, the

 kernel fills in all entries of the dqblk structure and marks

 them as valid in the dqb_valid field. Unprivileged users may

 retrieve only their own quotas; a privileged user (CAP_SYS_AD?

 MIN) can retrieve the quotas of any user.

 Q_GETNEXTQUOTA (since Linux 4.6)

 This operation is the same as Q_GETQUOTA, but it returns quota

 information for the next ID greater than or equal to id that has

 a quota set.

 The addr argument is a pointer to a nextdqblk structure whose

 fields are as for the dqblk, except for the addition of a dqb_id

 field that is used to return the ID for which quota information

 is being returned:

 struct nextdqblk {

 uint64_t dqb_bhardlimit;

 uint64_t dqb_bsoftlimit;

 uint64_t dqb_curspace;

 uint64_t dqb_ihardlimit;

 uint64_t dqb_isoftlimit;

 uint64_t dqb_curinodes;

 uint64_t dqb_btime;

 uint64_t dqb_itime;

 uint32_t dqb_valid;

 uint32_t dqb_id;

 }; Page 4/13

 Q_SETQUOTA

 Set quota information for user or group id, using the informa?

 tion supplied in the dqblk structure pointed to by addr. The

 dqb_valid field of the dqblk structure indicates which entries

 in the structure have been set by the caller. This operation

 supersedes the Q_SETQLIM and Q_SETUSE operations in the previous

 quota interfaces. This operation requires privilege

 (CAP_SYS_ADMIN).

 Q_GETINFO (since Linux 2.4.22)

 Get information (like grace times) about quotafile. The addr

 argument should be a pointer to a dqinfo structure. This struc?

 ture is defined in <sys/quota.h> as follows:

 /* uint64_t is an unsigned 64-bit integer;

 uint32_t is an unsigned 32-bit integer */

 struct dqinfo { /* Defined since kernel 2.4.22 */

 uint64_t dqi_bgrace; /* Time before block soft limit

 becomes hard limit */

 uint64_t dqi_igrace; /* Time before inode soft limit

 becomes hard limit */

 uint32_t dqi_flags; /* Flags for quotafile

 (DQF_*) */

 uint32_t dqi_valid;

 };

 /* Bits for dqi_flags */

 /* Quota format QFMT_VFS_OLD */

 #define DQF_ROOT_SQUASH (1 << 0) /* Root squash enabled */

 /* Before Linux v4.0, this had been defined

 privately as V1_DQF_RSQUASH */

 /* Quota format QFMT_VFS_V0 / QFMT_VFS_V1 */

 #define DQF_SYS_FILE (1 << 16) /* Quota stored in

 a system file */

 /* Flags in dqi_valid that indicate which fields in

 dqinfo structure are valid. */ Page 5/13

 #define IIF_BGRACE 1

 #define IIF_IGRACE 2

 #define IIF_FLAGS 4

 #define IIF_ALL (IIF_BGRACE | IIF_IGRACE | IIF_FLAGS)

 The dqi_valid field in the dqinfo structure indicates the en?

 tries in the structure that are valid. Currently, the kernel

 fills in all entries of the dqinfo structure and marks them all

 as valid in the dqi_valid field. The id argument is ignored.

 Q_SETINFO (since Linux 2.4.22)

 Set information about quotafile. The addr argument should be a

 pointer to a dqinfo structure. The dqi_valid field of the

 dqinfo structure indicates the entries in the structure that

 have been set by the caller. This operation supersedes the

 Q_SETGRACE and Q_SETFLAGS operations in the previous quota in?

 terfaces. The id argument is ignored. This operation requires

 privilege (CAP_SYS_ADMIN).

 Q_GETFMT (since Linux 2.4.22)

 Get quota format used on the specified filesystem. The addr ar?

 gument should be a pointer to a 4-byte buffer where the format

 number will be stored.

 Q_SYNC Update the on-disk copy of quota usages for a filesystem. If

 special is NULL, then all filesystems with active quotas are

 sync'ed. The addr and id arguments are ignored.

 Q_GETSTATS (supported up to Linux 2.4.21)

 Get statistics and other generic information about the quota

 subsystem. The addr argument should be a pointer to a dqstats

 structure in which data should be stored. This structure is de?

 fined in <sys/quota.h>. The special and id arguments are ig?

 nored.

 This operation is obsolete and was removed in Linux 2.4.22.

 Files in /proc/sys/fs/quota/ carry the information instead.

 For XFS filesystems making use of the XFS Quota Manager (XQM), the

 above operations are bypassed and the following operations are used: Page 6/13

 Q_XQUOTAON

 Turn on quotas for an XFS filesystem. XFS provides the ability

 to turn on/off quota limit enforcement with quota accounting.

 Therefore, XFS expects addr to be a pointer to an unsigned int

 that contains a bitwise combination of the following flags (de?

 fined in <xfs/xqm.h>):

 XFS_QUOTA_UDQ_ACCT /* User quota accounting */

 XFS_QUOTA_UDQ_ENFD /* User quota limits enforcement */

 XFS_QUOTA_GDQ_ACCT /* Group quota accounting */

 XFS_QUOTA_GDQ_ENFD /* Group quota limits enforcement */

 XFS_QUOTA_PDQ_ACCT /* Project quota accounting */

 XFS_QUOTA_PDQ_ENFD /* Project quota limits enforcement */

 This operation requires privilege (CAP_SYS_ADMIN). The id argu?

 ment is ignored.

 Q_XQUOTAOFF

 Turn off quotas for an XFS filesystem. As with Q_QUOTAON, XFS

 filesystems expect a pointer to an unsigned int that specifies

 whether quota accounting and/or limit enforcement need to be

 turned off (using the same flags as for Q_XQUOTAON operation).

 This operation requires privilege (CAP_SYS_ADMIN). The id argu?

 ment is ignored.

 Q_XGETQUOTA

 Get disk quota limits and current usage for user id. The addr

 argument is a pointer to an fs_disk_quota structure, which is

 defined in <xfs/xqm.h> as follows:

 /* All the blk units are in BBs (Basic Blocks) of

 512 bytes. */

 #define FS_DQUOT_VERSION 1 /* fs_disk_quota.d_version */

 #define XFS_USER_QUOTA (1<<0) /* User quota type */

 #define XFS_PROJ_QUOTA (1<<1) /* Project quota type */

 #define XFS_GROUP_QUOTA (1<<2) /* Group quota type */

 struct fs_disk_quota {

 int8_t d_version; /* Version of this structure */ Page 7/13

 int8_t d_flags; /* XFS_{USER,PROJ,GROUP}_QUOTA */

 uint16_t d_fieldmask; /* Field specifier */

 uint32_t d_id; /* User, project, or group ID */

 uint64_t d_blk_hardlimit; /* Absolute limit on

 disk blocks */

 uint64_t d_blk_softlimit; /* Preferred limit on

 disk blocks */

 uint64_t d_ino_hardlimit; /* Maximum # allocated

 inodes */

 uint64_t d_ino_softlimit; /* Preferred inode limit */

 uint64_t d_bcount; /* # disk blocks owned by

 the user */

 uint64_t d_icount; /* # inodes owned by the user */

 int32_t d_itimer; /* Zero if within inode limits */

 /* If not, we refuse service */

 int32_t d_btimer; /* Similar to above; for

 disk blocks */

 uint16_t d_iwarns; /* # warnings issued with

 respect to # of inodes */

 uint16_t d_bwarns; /* # warnings issued with

 respect to disk blocks */

 int32_t d_padding2; /* Padding - for future use */

 uint64_t d_rtb_hardlimit; /* Absolute limit on realtime

 (RT) disk blocks */

 uint64_t d_rtb_softlimit; /* Preferred limit on RT

 disk blocks */

 uint64_t d_rtbcount; /* # realtime blocks owned */

 int32_t d_rtbtimer; /* Similar to above; for RT

 disk blocks */

 uint16_t d_rtbwarns; /* # warnings issued with

 respect to RT disk blocks */

 int16_t d_padding3; /* Padding - for future use */

 char d_padding4[8]; /* Yet more padding */ Page 8/13

 };

 Unprivileged users may retrieve only their own quotas; a privi?

 leged user (CAP_SYS_ADMIN) may retrieve the quotas of any user.

 Q_XGETNEXTQUOTA (since Linux 4.6)

 This operation is the same as Q_XGETQUOTA, but it returns (in

 the fs_disk_quota structure pointed by addr) quota information

 for the next ID greater than or equal to id that has a quota

 set. Note that since fs_disk_quota already has q_id field, no

 separate structure type is needed (in contrast with Q_GETQUOTA

 and Q_GETNEXTQUOTA operations)

 Q_XSETQLIM

 Set disk quota limits for user id. The addr argument is a

 pointer to an fs_disk_quota structure. This operation requires

 privilege (CAP_SYS_ADMIN).

 Q_XGETQSTAT

 Returns XFS filesystem-specific quota information in the

 fs_quota_stat structure pointed by addr. This is useful for

 finding out how much space is used to store quota information,

 and also to get the quota on/off status of a given local XFS

 filesystem. The fs_quota_stat structure itself is defined as

 follows:

 #define FS_QSTAT_VERSION 1 /* fs_quota_stat.qs_version */

 struct fs_qfilestat {

 uint64_t qfs_ino; /* Inode number */

 uint64_t qfs_nblks; /* Number of BBs

 512-byte-blocks */

 uint32_t qfs_nextents; /* Number of extents */

 };

 struct fs_quota_stat {

 int8_t qs_version; /* Version number for

 future changes */

 uint16_t qs_flags; /* XFS_QUOTA_{U,P,G}DQ_{ACCT,ENFD} */

 int8_t qs_pad; /* Unused */ Page 9/13

 struct fs_qfilestat qs_uquota; /* User quota storage

 information */

 struct fs_qfilestat qs_gquota; /* Group quota storage

 information */

 uint32_t qs_incoredqs; /* Number of dquots in core */

 int32_t qs_btimelimit; /* Limit for blocks timer */

 int32_t qs_itimelimit; /* Limit for inodes timer */

 int32_t qs_rtbtimelimit;/* Limit for RT

 blocks timer */

 uint16_t qs_bwarnlimit; /* Limit for # of warnings */

 uint16_t qs_iwarnlimit; /* Limit for # of warnings */

 };

 The id argument is ignored.

 Q_XGETQSTATV

 Returns XFS filesystem-specific quota information in the

 fs_quota_statv pointed to by addr. This version of the opera?

 tion uses a structure with proper versioning support, along with

 appropriate layout (all fields are naturally aligned) and pad?

 ding to avoiding special compat handling; it also provides the

 ability to get statistics regarding the project quota file. The

 fs_quota_statv structure itself is defined as follows:

 #define FS_QSTATV_VERSION1 1 /* fs_quota_statv.qs_version */

 struct fs_qfilestatv {

 uint64_t qfs_ino; /* Inode number */

 uint64_t qfs_nblks; /* Number of BBs

 512-byte-blocks */

 uint32_t qfs_nextents; /* Number of extents */

 uint32_t qfs_pad; /* Pad for 8-byte alignment */

 };

 struct fs_quota_statv {

 int8_t qs_version; /* Version for future

 changes */

 uint8_t qs_pad1; /* Pad for 16-bit alignment */ Page 10/13

 uint16_t qs_flags; /* XFS_QUOTA_.* flags */

 uint32_t qs_incoredqs; /* Number of dquots incore */

 struct fs_qfilestatv qs_uquota; /* User quota

 information */

 struct fs_qfilestatv qs_gquota; /* Group quota

 information */

 struct fs_qfilestatv qs_pquota; /* Project quota

 information */

 int32_t qs_btimelimit; /* Limit for blocks timer */

 int32_t qs_itimelimit; /* Limit for inodes timer */

 int32_t qs_rtbtimelimit; /* Limit for RT blocks

 timer */

 uint16_t qs_bwarnlimit; /* Limit for # of warnings */

 uint16_t qs_iwarnlimit; /* Limit for # of warnings */

 uint64_t qs_pad2[8]; /* For future proofing */

 };

 The qs_version field of the structure should be filled with the

 version of the structure supported by the callee (for now, only

 FS_QSTAT_VERSION1 is supported). The kernel will fill the

 structure in accordance with version provided. The id argument

 is ignored.

 Q_XQUOTARM (since Linux 3.16)

 Free the disk space taken by disk quotas. The addr argument

 should be a pointer to an unsigned int value containing flags

 (the same as in d_flags field of fs_disk_quota structure) which

 identify what types of quota should be removed. (Note that the

 quota type passed in the cmd argument is ignored, but should re?

 main valid in order to pass preliminary quotactl syscall handler

 checks.)

 Quotas must have already been turned off. The id argument is

 ignored.

 Q_XQUOTASYNC (since Linux 2.6.15; no-op since Linux 3.4)

 This operation was an XFS quota equivalent to Q_SYNC, but it is Page 11/13

 no-op since Linux 3.4, as sync(1) writes quota information to

 disk now (in addition to the other filesystem metadata that it

 writes out). The special, id and addr arguments are ignored.

RETURN VALUE

 On success, quotactl() returns 0; on error -1 is returned, and errno is

 set to indicate the error.

ERRORS

 EACCES cmd is Q_QUOTAON, and the quota file pointed to by addr exists,

 but is not a regular file or is not on the filesystem pointed to

 by special.

 EBUSY cmd is Q_QUOTAON, but another Q_QUOTAON had already been per?

 formed.

 EFAULT addr or special is invalid.

 EINVAL cmd or type is invalid.

 EINVAL cmd is Q_QUOTAON, but the specified quota file is corrupted.

 EINVAL (since Linux 5.5)

 cmd is Q_XQUOTARM, but addr does not point to valid quota types.

 ENOENT The file specified by special or addr does not exist.

 ENOSYS The kernel has not been compiled with the CONFIG_QUOTA option.

 ENOTBLK

 special is not a block device.

 EPERM The caller lacked the required privilege (CAP_SYS_ADMIN) for the

 specified operation.

 ERANGE cmd is Q_SETQUOTA, but the specified limits are out of the range

 allowed by the quota format.

 ESRCH No disk quota is found for the indicated user. Quotas have not

 been turned on for this filesystem.

 ESRCH cmd is Q_QUOTAON, but the specified quota format was not found.

 ESRCH cmd is Q_GETNEXTQUOTA or Q_XGETNEXTQUOTA, but there is no ID

 greater than or equal to id that has an active quota.

NOTES

 Instead of <xfs/xqm.h> one can use <linux/dqblk_xfs.h>, taking into ac?

 count that there are several naming discrepancies: Page 12/13

 ? Quota enabling flags (of format XFS_QUOTA_[UGP]DQ_{ACCT,ENFD}) are

 defined without a leading "X", as FS_QUOTA_[UGP]DQ_{ACCT,ENFD}.

 ? The same is true for XFS_{USER,GROUP,PROJ}_QUOTA quota type flags,

 which are defined as FS_{USER,GROUP,PROJ}_QUOTA.

 ? The dqblk_xfs.h header file defines its own XQM_USRQUOTA, XQM_GR?

 PQUOTA, and XQM_PRJQUOTA constants for the available quota types,

 but their values are the same as for constants without the XQM_ pre?

 fix.

SEE ALSO

 quota(1), getrlimit(2), quotacheck(8), quotaon(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 QUOTACTL(2)

Page 13/13

