
Rocky Enterprise Linux 9.2 Manual Pages on command 'quadlet.5'

$ man quadlet.5

podman-systemd.unit(5) File Formats Manual podman-systemd.unit(5)

NAME

 podman-systemd.unit - systemd units using Podman quadlet

SYNOPSIS

 name.container, name.volume

 Podman unit search path

 ? /etc/containers/systemd/

 ? /usr/share/containers/systemd/

 Podman user unit search path

 ? $XDG_CONFIG_HOME/containers/systemd/

 ? ~/.config/containers/systemd/

DESCRIPTION

 Podman supports starting containers (and creating volumes) via systemd

 by using a systemd generator. These files are read during boot (and

 when systemctl daemon-reload is run) and generate corresponding regular

 systemd service unit files. Both system and user systemd units are sup?

 ported.

 The Podman generator reads the search paths above and reads files with Page 1/14

 the extensions .container and .volume, and for each file generates a

 similarly named .service file. These units can be started and managed

 with systemctl like any other systemd service.

 The Podman files use the same format as regular systemd unit files.

 Each file type has a custom section (for example, [Container]) that is

 handled by Podman, and all other sections will be passed on untouched,

 allowing the use of any normal systemd configuration options like de?

 pendencies or cgroup limits.

 Enabling unit files

 The services created by Podman are considered transient by systemd,

 which means they don't have the same persistence rules as regular

 units. In particular, it is not possible to "systemctl enable" them in

 order for them to become automatically enabled on the next boot.

 To compensate for this, the generator manually applies the [Install]

 section of the container definition unit files during generation, in

 the same way systemctl enable would do when run later.

 For example, to start a container on boot, add something like this to

 the file:

 [Install]

 WantedBy=default.target

 Currently, only the Alias, WantedBy and RequiredBy keys are supported.

 NOTE: To express dependencies between containers, use the generated

 names of the service. In other words WantedBy=other.service, not Want?

 edBy=other.container. The same is true for other kinds of dependencies,

 too, like After=other.service.

 ==

 Container units [Container]

 Container units are named with a .container extension and contain a

 [Container]section describing the container that should be run as a

 service. The resulting service file will contain a line like Exec?

 Start=podman run ? image-name, and most of the keys in this section

 control the command-line options passed to Podman. However, some op?

 tions also affect the details of how systemd is set up to run and in? Page 2/14

 teract with the container.

 By default, the Podman container will have the same name as the unit,

 but with a systemd- prefix. I.e. a $name.container file will create a

 $name.service unit and a systemd-$name Podman container.

 There is only one required key, Image, which defines the container im?

 age the service should run.

 Supported keys in Container section are:

 AddCapability=

 By default, the container runs with no capabilities (due to DropCapa?

 bilities='all'). If any specific caps are needed, then add them with

 this key. For example using AddCapability=CAP_DAC_OVERRIDE.

 This is a space separated list of capabilities. This key can be listed

 multiple times.

 For example:

 AddCapability=CAP_DAC_OVERRIDE CAP_IPC_OWNER

 AddDevice=

 Adds a device node from the host into the container. The format of this

 is HOST-DEVICE[:CONTAINER-DEVICE][:PERMISSIONS], where HOST-DEVICE is

 the path of the device node on the host, CONTAINER-DEVICE is the path

 of the device node in the container, and PERMISSIONS is a list of per?

 missions combining 'r' for read,

 This key can be listed multiple times.

 Annotation=

 Set one or more OCI annotations on the container. The format is a list

 of key=value items, similar to Environment.

 This key can be listed multiple times.

 ContainerName=

 The (optional) name of the Podman container. If this is not specified,

 the default value of systemd-%N will be used, which is the same as the

 service name but with a systemd- prefix to avoid conflicts with user-

 managed containers.

 DropCapability= (defaults to all)

 Drop these capabilities from the default podman capability set, or all Page 3/14

 to drop all capabilities.

 This is a space separated list of capabilities. This key can be listed

 multiple times.

 For example:

 DropCapability=CAP_DAC_OVERRIDE CAP_IPC_OWNER

 Environment=

 Set an environment variable in the container. This uses the same format

 as services in systemd and can be listed multiple times.

 EnvironmentFile=

 Use a line-delimited file to set environment variables in the con?

 tainer. The path may be absolute or relative to the location of the

 unit file. This key may be used multiple times, and the order persists

 when passed to podman run.

 EnvironmentHost= (defaults to no)

 Use the host environment inside of the container.

 Exec=

 If this is set then it defines what command line to run in the con?

 tainer. If it is not set the default entry point of the container image

 is used. The format is the same as for systemd command lines.

 ExposeHostPort=

 Exposes a port, or a range of ports (e.g. 50-59), from the host to the

 container. Equivalent to the Podman --expose option.

 This key can be listed multiple times.

 Group=

 The (numeric) gid to run as inside the container. This does not need to

 match the gid on the host, which can be modified with RemapUsers, but

 if that is not specified, this gid is also used on the host.

 Image=

 The image to run in the container. This image must be locally installed

 for the service to work when it is activated, because the generated

 service file will never try to download images. It is recommended to

 use a fully qualified image name rather than a short name, both for

 performance and robustness reasons. Page 4/14

 The format of the name is the same as when passed to podman run, so it

 supports e.g., using :tag or using digests guarantee a specific image

 version.

 Label=

 Set one or more OCI labels on the container. The format is a list of

 key=value items, similar to Environment.

 This key can be listed multiple times.

 Network=

 Specify a custom network for the container. This has the same format as

 the --network option to podman run. For example, use host to use the

 host network in the container, or none to not set up networking in the

 container.

 As a special case, if the name of the network ends with .network, a

 Podman network called systemd-$name will be used, and the generated

 systemd service will contain a dependency on the $name-network.service.

 Such a network can be automatically created by using a $name.network

 quadlet file.

 This key can be listed multiple times.

 NoNewPrivileges= (defaults to no)

 If enabled (which is the default), this disables the container pro?

 cesses from gaining additional privileges via things like setuid and

 file capabilities.

 Notify= (defaults to no)

 By default, Podman is run in such a way that the systemd startup notify

 command is handled by the container runtime. In other words, the ser?

 vice is deemed started when the container runtime starts the child in

 the container. However, if the container application supports sd_no?

 tify, then setting Notifyto true will pass the notification details to

 the container allowing it to notify of startup on its own.

 PodmanArgs=

 This key contains a list of arguments passed directly to the end of the

 podman run command in the generated file (right before the image name

 in the command line). It can be used to access Podman features other? Page 5/14

 wise unsupported by the generator. Since the generator is unaware of

 what unexpected interactions can be caused by these arguments, is not

 recommended to use this option.

 The format of this is a space separated list of arguments, which can

 optionally be individually escaped to allow inclusion of whitespace and

 other control characters. This key can be listed multiple times.

 PublishPort=

 Exposes a port, or a range of ports (e.g. 50-59), from the container to

 the host. Equivalent to the Podman --publish option. The format is sim?

 ilar to the Podman options, which is of the form ip:hostPort:container?

 Port, ip::containerPort, hostPort:containerPort or containerPort, where

 the number of host and container ports must be the same (in the case of

 a range).

 If the IP is set to 0.0.0.0 or not set at all, the port will be bound

 on all IPv4 addresses on the host; use [::] for IPv6.

 Note that not listing a host port means that Podman will automatically

 select one, and it may be different for each invocation of service.

 This makes that a less useful option. The allocated port can be found

 with the podman port command.

 This key can be listed multiple times.

 ReadOnly= (defaults to no)

 If enabled, makes image read-only, with /var/tmp, /tmp and /run a tmpfs

 (unless disabled by VolatileTmp=no).r

 NOTE: Podman will automatically copy any content from the image onto

 the tmpfs

 RemapGid=

 RemapGid key to force a particular host uid to be mapped to the con?

 tainer.

 In keep-id mode, the running user is mapped to the same id in the con?

 tainer. This is supported only on user systemd units.

 If RemapUsers is enabled, this specifies a gid mapping of the form con?

 tainer_gid:from_gid:amount, which will map amount number of gids on the

 host starting at from_gid into the container, starting at con? Page 6/14

 tainer_gid.

 RemapUid=

 If RemapUsers is enabled, this specifies a uid mapping of the form con?

 tainer_uid:from_uid:amount, which will map amount number of uids on the

 host starting at from_uid into the container, starting at con?

 tainer_uid.

 RemapUidSize=

 If RemapUsers is enabled and set to auto, this specifies the count of

 the ids to remap

 RemapUsers=

 If this is set, then host user and group ids are remapped in the con?

 tainer. It currently supports values: auto, manual and keep-id.

 In manual mode, the RemapUid and RemapGid options can define an exact

 mapping of uids from host to container. You must specify these.

 In auto mode mode, the subuids and subgids allocated to the containers

 user is used to allocate host uids/gids to use for the container. By

 default this will try to estimate a count of the ids to remap, but

 RemapUidSize can be specified to use an explicit size. Use RemapUid and

 RunInit= (default to no)

 If enabled, the container will have a minimal init process inside the

 container that forwards signals and reaps processes.

 SeccompProfile=

 Set the seccomp profile to use in the container. If unset, the default

 podman profile is used. Set to either the pathname of a json file, or

 unconfined to disable the seccomp filters.

 Timezone= (if unset uses system-configured default)

 The timezone to run the container in.

 User=

 The (numeric) uid to run as inside the container. This does not need to

 match the uid on the host, which can be modified with RemapUsers, but

 if that is not specified, this uid is also used on the host.

 VolatileTmp= (default to no, or yes if ReadOnly enabled)

 If enabled, the container will have a fresh tmpfs mounted on /tmp. Page 7/14

 NOTE: Podman will automatically copy any content from the image onto

 the tmpfs

 Volume=

 Mount a volume in the container. This is equivalent to the Podman

 --volume option, and generally has the form [[SOURCE-VOLUME|HOST-

 DIR:]CONTAINER-DIR[:OPTIONS]].

 As a special case, if SOURCE-VOLUME ends with .volume, a Podman named

 volume called systemd-$name will be used as the source, and the gener?

 ated systemd service will contain a dependency on the $name-volume.ser?

 vice. Such a volume can be automatically be lazily created by using a

 $name.volume quadlet file.

 This key can be listed multiple times.

 ==

 Kube units [Kube]

 Kube units are named with a .kube extension and contain a [Kube]section

 describing how podman kube play should be run as a service. The result?

 ing service file will contain a line like ExecStart=podman kube play ?

 file.yml, and most of the keys in this section control the command-line

 options passed to Podman. However, some options also affect the details

 of how systemd is set up to run and interact with the container.

 There is only one required key, Yaml, which defines the path to the Ku?

 bernetes YAML file.

 Supported keys in the Kube section are:

 ConfigMap=

 Pass the Kubernetes ConfigMap YAML at path to podman kube play via the

 --configmap argument. Unlike the configmap argument, the value may

 contain only one path but it may be absolute or relative to the loca?

 tion of the unit file.

 This key may be used multiple times

 Network=

 Specify a custom network for the container. This has the same format as

 the --network option to podman kube play. For example, use host to use

 the host network in the container, or none to not set up networking in Page 8/14

 the container.

 As a special case, if the name of the network ends with .network, a

 Podman network called systemd-$name will be used, and the generated

 systemd service will contain a dependency on the $name-network.service.

 Such a network can be automatically created by using a $name.network

 quadlet file.

 This key can be listed multiple times.

 PublishPort=

 Exposes a port, or a range of ports (e.g. 50-59), from the container to

 the host. Equivalent to the podman kube play's --publish option. The

 format is similar to the Podman options, which is of the form ip:host?

 Port:containerPort, ip::containerPort, hostPort:containerPort or con?

 tainerPort, where the number of host and container ports must be the

 same (in the case of a range).

 If the IP is set to 0.0.0.0 or not set at all, the port will be bound

 on all IPv4 addresses on the host; use [::] for IPv6.

 The list of published ports specified in the unit file will be merged

 with the list of ports specified in the Kubernetes YAML file. If the

 same container port and protocol is specified in both, the entry from

 the unit file will take precedence

 This key can be listed multiple times.

 RemapGid=

 If RemapUsers is enabled, this specifies a gid mapping of the form con?

 tainer_gid:from_gid:amount, which will map amount number of gids on the

 host starting at from_gid into the container, starting at con?

 tainer_gid.

 RemapUid=

 If RemapUsers is enabled, this specifies a uid mapping of the form con?

 tainer_uid:from_uid:amount, which will map amount number of uids on the

 host starting at from_uid into the container, starting at con?

 tainer_uid.

 RemapUidSize=

 If RemapUsers is enabled and set to auto, this specifies the count of Page 9/14

 the ids to remap.

 RemapUsers=

 If this is set, then host user and group ids are remapped in the con?

 tainer. It currently supports values: auto, and keep-id.

 In auto mode mode, the subuids and subgids allocated to the containers

 user is used to allocate host uids/gids to use for the container. By

 default this will try to estimate a count of the ids to remap, but

 RemapUidSize can be specified to use an explicit size. Use RemapUid and

 RemapGid key to force a particular host uid to be mapped to the con?

 tainer.

 In keep-id mode, the running user is mapped to the same id in the con?

 tainer. This is supported only on user systemd units.

 Yaml=

 The path, absolute or relative to the location of the unit file, to the

 Kubernetes YAML file to use.

 ==

 Network units [Network]

 Network files are named with a .network extension and contain a section

 [Network] describing the named Podman network. The generated service is

 a one-time command that ensures that the network exists on the host,

 creating it if needed.

 For a network file named $NAME.network, the generated Podman network

 will be called systemd-$NAME, and the generated service file $NAME-net?

 work.service.

 Using network units allows containers to depend on networks being auto?

 matically pre-created. This is particularly interesting when using spe?

 cial options to control network creation, as Podman will otherwise cre?

 ate networks with the default options.

 Supported keys in Network section are:

 DisableDNS= (defaults to no)

 If enabled, disables the DNS plugin for this network.

 This is equivalent to the Podman --disable-dns option

 Driver= (defaults to bridge) Page 10/14

 Driver to manage the network. Currently bridge, macvlan and ipvlan are

 supported.

 This is equivalent to the Podman --driver option

 Gateway=

 Define a gateway for the subnet. If you want to provide a gateway ad?

 dress, you must also provide a subnet option.

 This is equivalent to the Podman --gateway option

 This key can be listed multiple times.

 Internal= (defaults to no)

 Restrict external access of this network.

 This is equivalent to the Podman --internal option

 IPAMDriver=

 Set the ipam driver (IP Address Management Driver) for the network.

 Currently host-local, dhcp and none are supported.

 This is equivalent to the Podman --ipam-driver option

 IPRange=

 Allocate container IP from a range. The range must be a complete

 subnet and in CIDR notation. The ip-range option must be used with a

 subnet option.

 This is equivalent to the Podman --ip-range option

 This key can be listed multiple times.

 IPv6=

 Enable IPv6 (Dual Stack) networking.

 This is equivalent to the Podman --ipv6 option

 Label=

 Set one or more OCI labels on the network. The format is a list of

 key=value items, similar to Environment.

 This key can be listed multiple times.

 Options=

 Set driver specific options.

 This is equivalent to the Podman --opt option

 Subnet=

 The subnet in CIDR notation. Page 11/14

 This is equivalent to the Podman --subnet option

 This key can be listed multiple times.

 ==

 Volume units [Volume]

 Volume files are named with a .volume extension and contain a section

 [Volume] describing the named Podman volume. The generated service is a

 one-time command that ensures that the volume exists on the host, cre?

 ating it if needed.

 For a volume file named $NAME.volume, the generated Podman volume will

 be called systemd-$NAME, and the generated service file $NAME-vol?

 ume.service.

 Using volume units allows containers to depend on volumes being auto?

 matically pre-created. This is particularly interesting when using spe?

 cial options to control volume creation, as Podman will otherwise cre?

 ate volumes with the default options.

 Supported keys in Volume section are:

 Copy= (default to yes)

 If enabled, the content of the image located at the mountpoint of the

 volume is copied into the volume on the first run.

 Device=

 The path of a device which should be mounted for the volume.

 Group=

 The host (numeric) gid, or group name to use as the group for the vol?

 ume

 Label=

 Set one or more OCI labels on the volume. The format is a list of

 key=value items, similar to Environment.

 This key can be listed multiple times.

 Options=

 The mount options to use for a filesystem as used by the mount(8) com?

 mand -o option.

 Type=

 The filesystem type of Device as used by the mount(8) commands -t op? Page 12/14

 tion.

 User=

 The host (numeric) uid, or user name to use as the owner for the volume

EXAMPLES

 Example test.container:

 [Unit]

 Description=A minimal container

 Before=local-fs.target

 [Container]

 # Use the centos image

 Image=quay.io/centos/centos:latest

 Volume=test.volume:/data

 # In the container we just run sleep

 Exec=sleep 60

 [Service]

 # Restart service when sleep finishes

 Restart=always

 [Install]

 # Start by default on boot

 WantedBy=multi-user.target default.target

 Example test.kube:

 [Unit]

 Description=A kubernetes yaml based service

 Before=local-fs.target

 [Kube]

 Yaml=/opt/k8s/deployment.yml

 [Install]

 # Start by default on boot

 WantedBy=multi-user.target default.target

 Example test.volume:

 [Volume]

 User=root

 Group=projectname Page 13/14

 Label=org.test.Key=value

 Example test.network:

 [Network]

 Subnet=172.16.0.0/24

 Gateway=172.16.0.1

 IPRange=172.16.0.0/28

 Label=org.test.Key=value

SEE ALSO

 systemd.unit(5), systemd.service(5), podman-run(1) podman-network-cre?

 ate(1)

 podman-systemd.unit(5)

Page 14/14

