
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthreads.7'

$ man pthreads.7

PTHREADS(7) Linux Programmer's Manual PTHREADS(7)

NAME

 pthreads - POSIX threads

DESCRIPTION

 POSIX.1 specifies a set of interfaces (functions, header files) for

 threaded programming commonly known as POSIX threads, or Pthreads. A

 single process can contain multiple threads, all of which are executing

 the same program. These threads share the same global memory (data and

 heap segments), but each thread has its own stack (automatic vari?

 ables).

 POSIX.1 also requires that threads share a range of other attributes

 (i.e., these attributes are process-wide rather than per-thread):

 - process ID

 - parent process ID

 - process group ID and session ID

 - controlling terminal

 - user and group IDs

 - open file descriptors Page 1/20

 - record locks (see fcntl(2))

 - signal dispositions

 - file mode creation mask (umask(2))

 - current directory (chdir(2)) and root directory (chroot(2))

 - interval timers (setitimer(2)) and POSIX timers (timer_create(2))

 - nice value (setpriority(2))

 - resource limits (setrlimit(2))

 - measurements of the consumption of CPU time (times(2)) and resources

 (getrusage(2))

 As well as the stack, POSIX.1 specifies that various other attributes

 are distinct for each thread, including:

 - thread ID (the pthread_t data type)

 - signal mask (pthread_sigmask(3))

 - the errno variable

 - alternate signal stack (sigaltstack(2))

 - real-time scheduling policy and priority (sched(7))

 The following Linux-specific features are also per-thread:

 - capabilities (see capabilities(7))

 - CPU affinity (sched_setaffinity(2))

 Pthreads function return values

 Most pthreads functions return 0 on success, and an error number on

 failure. The error numbers that can be returned have the same meaning

 as the error numbers returned in errno by conventional system calls and

 C library functions. Note that the pthreads functions do not set er?

 rno. For each of the pthreads functions that can return an error,

 POSIX.1-2001 specifies that the function can never fail with the error

 EINTR.

 Thread IDs

 Each of the threads in a process has a unique thread identifier (stored

 in the type pthread_t). This identifier is returned to the caller of

 pthread_create(3), and a thread can obtain its own thread identifier

 using pthread_self(3).

 Thread IDs are guaranteed to be unique only within a process. (In all Page 2/20

 pthreads functions that accept a thread ID as an argument, that ID by

 definition refers to a thread in the same process as the caller.)

 The system may reuse a thread ID after a terminated thread has been

 joined, or a detached thread has terminated. POSIX says: "If an appli?

 cation attempts to use a thread ID whose lifetime has ended, the behav?

 ior is undefined."

 Thread-safe functions

 A thread-safe function is one that can be safely (i.e., it will deliver

 the same results regardless of whether it is) called from multiple

 threads at the same time.

 POSIX.1-2001 and POSIX.1-2008 require that all functions specified in

 the standard shall be thread-safe, except for the following functions:

 asctime()

 basename()

 catgets()

 crypt()

 ctermid() if passed a non-NULL argument

 ctime()

 dbm_clearerr()

 dbm_close()

 dbm_delete()

 dbm_error()

 dbm_fetch()

 dbm_firstkey()

 dbm_nextkey()

 dbm_open()

 dbm_store()

 dirname()

 dlerror()

 drand48()

 ecvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 encrypt()

 endgrent() Page 3/20

 endpwent()

 endutxent()

 fcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 ftw()

 gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 getc_unlocked()

 getchar_unlocked()

 getdate()

 getenv()

 getgrent()

 getgrgid()

 getgrnam()

 gethostbyaddr() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostbyname() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostent()

 getlogin()

 getnetbyaddr()

 getnetbyname()

 getnetent()

 getopt()

 getprotobyname()

 getprotobynumber()

 getprotoent()

 getpwent()

 getpwnam()

 getpwuid()

 getservbyname()

 getservbyport()

 getservent()

 getutxent()

 getutxid() Page 4/20

 getutxline()

 gmtime()

 hcreate()

 hdestroy()

 hsearch()

 inet_ntoa()

 l64a()

 lgamma()

 lgammaf()

 lgammal()

 localeconv()

 localtime()

 lrand48()

 mrand48()

 nftw()

 nl_langinfo()

 ptsname()

 putc_unlocked()

 putchar_unlocked()

 putenv()

 pututxline()

 rand()

 readdir()

 setenv()

 setgrent()

 setkey()

 setpwent()

 setutxent()

 strerror()

 strsignal() [Added in POSIX.1-2008]

 strtok()

 system() [Added in POSIX.1-2008]

 tmpnam() if passed a non-NULL argument Page 5/20

 ttyname()

 unsetenv()

 wcrtomb() if its final argument is NULL

 wcsrtombs() if its final argument is NULL

 wcstombs()

 wctomb()

 Async-cancel-safe functions

 An async-cancel-safe function is one that can be safely called in an

 application where asynchronous cancelability is enabled (see

 pthread_setcancelstate(3)).

 Only the following functions are required to be async-cancel-safe by

 POSIX.1-2001 and POSIX.1-2008:

 pthread_cancel()

 pthread_setcancelstate()

 pthread_setcanceltype()

 Cancellation points

 POSIX.1 specifies that certain functions must, and certain other func?

 tions may, be cancellation points. If a thread is cancelable, its can?

 celability type is deferred, and a cancellation request is pending for

 the thread, then the thread is canceled when it calls a function that

 is a cancellation point.

 The following functions are required to be cancellation points by

 POSIX.1-2001 and/or POSIX.1-2008:

 accept()

 aio_suspend()

 clock_nanosleep()

 close()

 connect()

 creat()

 fcntl() F_SETLKW

 fdatasync()

 fsync()

 getmsg() Page 6/20

 getpmsg()

 lockf() F_LOCK

 mq_receive()

 mq_send()

 mq_timedreceive()

 mq_timedsend()

 msgrcv()

 msgsnd()

 msync()

 nanosleep()

 open()

 openat() [Added in POSIX.1-2008]

 pause()

 poll()

 pread()

 pselect()

 pthread_cond_timedwait()

 pthread_cond_wait()

 pthread_join()

 pthread_testcancel()

 putmsg()

 putpmsg()

 pwrite()

 read()

 readv()

 recv()

 recvfrom()

 recvmsg()

 select()

 sem_timedwait()

 sem_wait()

 send()

 sendmsg() Page 7/20

 sendto()

 sigpause() [POSIX.1-2001 only (moves to "may" list in POSIX.1-2008)]

 sigsuspend()

 sigtimedwait()

 sigwait()

 sigwaitinfo()

 sleep()

 system()

 tcdrain()

 usleep() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 wait()

 waitid()

 waitpid()

 write()

 writev()

 The following functions may be cancellation points according to

 POSIX.1-2001 and/or POSIX.1-2008:

 access()

 asctime()

 asctime_r()

 catclose()

 catgets()

 catopen()

 chmod() [Added in POSIX.1-2008]

 chown() [Added in POSIX.1-2008]

 closedir()

 closelog()

 ctermid()

 ctime()

 ctime_r()

 dbm_close()

 dbm_delete()

 dbm_fetch() Page 8/20

 dbm_nextkey()

 dbm_open()

 dbm_store()

 dlclose()

 dlopen()

 dprintf() [Added in POSIX.1-2008]

 endgrent()

 endhostent()

 endnetent()

 endprotoent()

 endpwent()

 endservent()

 endutxent()

 faccessat() [Added in POSIX.1-2008]

 fchmod() [Added in POSIX.1-2008]

 fchmodat() [Added in POSIX.1-2008]

 fchown() [Added in POSIX.1-2008]

 fchownat() [Added in POSIX.1-2008]

 fclose()

 fcntl() (for any value of cmd argument)

 fflush()

 fgetc()

 fgetpos()

 fgets()

 fgetwc()

 fgetws()

 fmtmsg()

 fopen()

 fpathconf()

 fprintf()

 fputc()

 fputs()

 fputwc() Page 9/20

 fputws()

 fread()

 freopen()

 fscanf()

 fseek()

 fseeko()

 fsetpos()

 fstat()

 fstatat() [Added in POSIX.1-2008]

 ftell()

 ftello()

 ftw()

 futimens() [Added in POSIX.1-2008]

 fwprintf()

 fwrite()

 fwscanf()

 getaddrinfo()

 getc()

 getc_unlocked()

 getchar()

 getchar_unlocked()

 getcwd()

 getdate()

 getdelim() [Added in POSIX.1-2008]

 getgrent()

 getgrgid()

 getgrgid_r()

 getgrnam()

 getgrnam_r()

 gethostbyaddr() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostbyname() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)] Page 10/20

 gethostent()

 gethostid()

 gethostname()

 getline() [Added in POSIX.1-2008]

 getlogin()

 getlogin_r()

 getnameinfo()

 getnetbyaddr()

 getnetbyname()

 getnetent()

 getopt() (if opterr is nonzero)

 getprotobyname()

 getprotobynumber()

 getprotoent()

 getpwent()

 getpwnam()

 getpwnam_r()

 getpwuid()

 getpwuid_r()

 gets()

 getservbyname()

 getservbyport()

 getservent()

 getutxent()

 getutxid()

 getutxline()

 getwc()

 getwchar()

 getwd() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 glob()

 iconv_close()

 iconv_open()

 ioctl() Page 11/20

 link()

 linkat() [Added in POSIX.1-2008]

 lio_listio() [Added in POSIX.1-2008]

 localtime()

 localtime_r()

 lockf() [Added in POSIX.1-2008]

 lseek()

 lstat()

 mkdir() [Added in POSIX.1-2008]

 mkdirat() [Added in POSIX.1-2008]

 mkdtemp() [Added in POSIX.1-2008]

 mkfifo() [Added in POSIX.1-2008]

 mkfifoat() [Added in POSIX.1-2008]

 mknod() [Added in POSIX.1-2008]

 mknodat() [Added in POSIX.1-2008]

 mkstemp()

 mktime()

 nftw()

 opendir()

 openlog()

 pathconf()

 pclose()

 perror()

 popen()

 posix_fadvise()

 posix_fallocate()

 posix_madvise()

 posix_openpt()

 posix_spawn()

 posix_spawnp()

 posix_trace_clear()

 posix_trace_close()

 posix_trace_create() Page 12/20

 posix_trace_create_withlog()

 posix_trace_eventtypelist_getnext_id()

 posix_trace_eventtypelist_rewind()

 posix_trace_flush()

 posix_trace_get_attr()

 posix_trace_get_filter()

 posix_trace_get_status()

 posix_trace_getnext_event()

 posix_trace_open()

 posix_trace_rewind()

 posix_trace_set_filter()

 posix_trace_shutdown()

 posix_trace_timedgetnext_event()

 posix_typed_mem_open()

 printf()

 psiginfo() [Added in POSIX.1-2008]

 psignal() [Added in POSIX.1-2008]

 pthread_rwlock_rdlock()

 pthread_rwlock_timedrdlock()

 pthread_rwlock_timedwrlock()

 pthread_rwlock_wrlock()

 putc()

 putc_unlocked()

 putchar()

 putchar_unlocked()

 puts()

 pututxline()

 putwc()

 putwchar()

 readdir()

 readdir_r()

 readlink() [Added in POSIX.1-2008]

 readlinkat() [Added in POSIX.1-2008] Page 13/20

 remove()

 rename()

 renameat() [Added in POSIX.1-2008]

 rewind()

 rewinddir()

 scandir() [Added in POSIX.1-2008]

 scanf()

 seekdir()

 semop()

 setgrent()

 sethostent()

 setnetent()

 setprotoent()

 setpwent()

 setservent()

 setutxent()

 sigpause() [Added in POSIX.1-2008]

 stat()

 strerror()

 strerror_r()

 strftime()

 symlink()

 symlinkat() [Added in POSIX.1-2008]

 sync()

 syslog()

 tmpfile()

 tmpnam()

 ttyname()

 ttyname_r()

 tzset()

 ungetc()

 ungetwc()

 unlink() Page 14/20

 unlinkat() [Added in POSIX.1-2008]

 utime() [Added in POSIX.1-2008]

 utimensat() [Added in POSIX.1-2008]

 utimes() [Added in POSIX.1-2008]

 vdprintf() [Added in POSIX.1-2008]

 vfprintf()

 vfwprintf()

 vprintf()

 vwprintf()

 wcsftime()

 wordexp()

 wprintf()

 wscanf()

 An implementation may also mark other functions not specified in the

 standard as cancellation points. In particular, an implementation is

 likely to mark any nonstandard function that may block as a cancella?

 tion point. (This includes most functions that can touch files.)

 It should be noted that even if an application is not using asynchro?

 nous cancellation, that calling a function from the above list from an

 asynchronous signal handler may cause the equivalent of asynchronous

 cancellation. The underlying user code may not expect asynchronous

 cancellation and the state of the user data may become inconsistent.

 Therefore signals should be used with caution when entering a region of

 deferred cancellation.

 Compiling on Linux

 On Linux, programs that use the Pthreads API should be compiled using

 cc -pthread.

 Linux implementations of POSIX threads

 Over time, two threading implementations have been provided by the GNU

 C library on Linux:

 LinuxThreads

 This is the original Pthreads implementation. Since glibc 2.4,

 this implementation is no longer supported. Page 15/20

 NPTL (Native POSIX Threads Library)

 This is the modern Pthreads implementation. By comparison with

 LinuxThreads, NPTL provides closer conformance to the require?

 ments of the POSIX.1 specification and better performance when

 creating large numbers of threads. NPTL is available since

 glibc 2.3.2, and requires features that are present in the Linux

 2.6 kernel.

 Both of these are so-called 1:1 implementations, meaning that each

 thread maps to a kernel scheduling entity. Both threading implementa?

 tions employ the Linux clone(2) system call. In NPTL, thread synchro?

 nization primitives (mutexes, thread joining, and so on) are imple?

 mented using the Linux futex(2) system call.

 LinuxThreads

 The notable features of this implementation are the following:

 - In addition to the main (initial) thread, and the threads that the

 program creates using pthread_create(3), the implementation creates

 a "manager" thread. This thread handles thread creation and termi?

 nation. (Problems can result if this thread is inadvertently

 killed.)

 - Signals are used internally by the implementation. On Linux 2.2 and

 later, the first three real-time signals are used (see also sig?

 nal(7)). On older Linux kernels, SIGUSR1 and SIGUSR2 are used. Ap?

 plications must avoid the use of whichever set of signals is em?

 ployed by the implementation.

 - Threads do not share process IDs. (In effect, LinuxThreads threads

 are implemented as processes which share more information than

 usual, but which do not share a common process ID.) LinuxThreads

 threads (including the manager thread) are visible as separate pro?

 cesses using ps(1).

 The LinuxThreads implementation deviates from the POSIX.1 specification

 in a number of ways, including the following:

 - Calls to getpid(2) return a different value in each thread.

 - Calls to getppid(2) in threads other than the main thread return the Page 16/20

 process ID of the manager thread; instead getppid(2) in these

 threads should return the same value as getppid(2) in the main

 thread.

 - When one thread creates a new child process using fork(2), any

 thread should be able to wait(2) on the child. However, the imple?

 mentation allows only the thread that created the child to wait(2)

 on it.

 - When a thread calls execve(2), all other threads are terminated (as

 required by POSIX.1). However, the resulting process has the same

 PID as the thread that called execve(2): it should have the same PID

 as the main thread.

 - Threads do not share user and group IDs. This can cause complica?

 tions with set-user-ID programs and can cause failures in Pthreads

 functions if an application changes its credentials using seteuid(2)

 or similar.

 - Threads do not share a common session ID and process group ID.

 - Threads do not share record locks created using fcntl(2).

 - The information returned by times(2) and getrusage(2) is per-thread

 rather than process-wide.

 - Threads do not share semaphore undo values (see semop(2)).

 - Threads do not share interval timers.

 - Threads do not share a common nice value.

 - POSIX.1 distinguishes the notions of signals that are directed to

 the process as a whole and signals that are directed to individual

 threads. According to POSIX.1, a process-directed signal (sent us?

 ing kill(2), for example) should be handled by a single, arbitrarily

 selected thread within the process. LinuxThreads does not support

 the notion of process-directed signals: signals may be sent only to

 specific threads.

 - Threads have distinct alternate signal stack settings. However, a

 new thread's alternate signal stack settings are copied from the

 thread that created it, so that the threads initially share an al?

 ternate signal stack. (A new thread should start with no alternate Page 17/20

 signal stack defined. If two threads handle signals on their shared

 alternate signal stack at the same time, unpredictable program fail?

 ures are likely to occur.)

 NPTL

 With NPTL, all of the threads in a process are placed in the same

 thread group; all members of a thread group share the same PID. NPTL

 does not employ a manager thread.

 NPTL makes internal use of the first two real-time signals; these sig?

 nals cannot be used in applications. See nptl(7) for further details.

 NPTL still has at least one nonconformance with POSIX.1:

 - Threads do not share a common nice value.

 Some NPTL nonconformances occur only with older kernels:

 - The information returned by times(2) and getrusage(2) is per-thread

 rather than process-wide (fixed in kernel 2.6.9).

 - Threads do not share resource limits (fixed in kernel 2.6.10).

 - Threads do not share interval timers (fixed in kernel 2.6.12).

 - Only the main thread is permitted to start a new session using set?

 sid(2) (fixed in kernel 2.6.16).

 - Only the main thread is permitted to make the process into a process

 group leader using setpgid(2) (fixed in kernel 2.6.16).

 - Threads have distinct alternate signal stack settings. However, a

 new thread's alternate signal stack settings are copied from the

 thread that created it, so that the threads initially share an al?

 ternate signal stack (fixed in kernel 2.6.16).

 Note the following further points about the NPTL implementation:

 - If the stack size soft resource limit (see the description of

 RLIMIT_STACK in setrlimit(2)) is set to a value other than unlim?

 ited, then this value defines the default stack size for new

 threads. To be effective, this limit must be set before the program

 is executed, perhaps using the ulimit -s shell built-in command

 (limit stacksize in the C shell).

 Determining the threading implementation

 Since glibc 2.3.2, the getconf(1) command can be used to determine the Page 18/20

 system's threading implementation, for example:

 bash$ getconf GNU_LIBPTHREAD_VERSION

 NPTL 2.3.4

 With older glibc versions, a command such as the following should be

 sufficient to determine the default threading implementation:

 bash$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | \

 egrep -i 'threads|nptl'

 Native POSIX Threads Library by Ulrich Drepper et al

 Selecting the threading implementation: LD_ASSUME_KERNEL

 On systems with a glibc that supports both LinuxThreads and NPTL (i.e.,

 glibc 2.3.x), the LD_ASSUME_KERNEL environment variable can be used to

 override the dynamic linker's default choice of threading implementa?

 tion. This variable tells the dynamic linker to assume that it is run?

 ning on top of a particular kernel version. By specifying a kernel

 version that does not provide the support required by NPTL, we can

 force the use of LinuxThreads. (The most likely reason for doing this

 is to run a (broken) application that depends on some nonconformant be?

 havior in LinuxThreads.) For example:

 bash$ $(LD_ASSUME_KERNEL=2.2.5 ldd /bin/ls | grep libc.so | \

 awk '{print $3}') | egrep -i 'threads|nptl'

 linuxthreads-0.10 by Xavier Leroy

SEE ALSO

 clone(2), fork(2), futex(2), gettid(2), proc(5), attributes(7),

 futex(7), nptl(7), sigevent(7), signal(7)

 Various Pthreads manual pages, for example: pthread_atfork(3),

 pthread_attr_init(3), pthread_cancel(3), pthread_cleanup_push(3),

 pthread_cond_signal(3), pthread_cond_wait(3), pthread_create(3),

 pthread_detach(3), pthread_equal(3), pthread_exit(3),

 pthread_key_create(3), pthread_kill(3), pthread_mutex_lock(3),

 pthread_mutex_unlock(3), pthread_mutexattr_destroy(3),

 pthread_mutexattr_init(3), pthread_once(3), pthread_spin_init(3),

 pthread_spin_lock(3), pthread_rwlockattr_setkind_np(3),

 pthread_setcancelstate(3), pthread_setcanceltype(3), Page 19/20

 pthread_setspecific(3), pthread_sigmask(3), pthread_sigqueue(3), and

 pthread_testcancel(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 PTHREADS(7)

Page 20/20

