
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_setcanceltype.3'

$ man pthread_setcanceltype.3

PTHREAD_SETCANCELSTATE(3) Linux Programmer's Manual PTHREAD_SETCANCELSTATE(3)

NAME

 pthread_setcancelstate, pthread_setcanceltype - set cancelability state

 and type

SYNOPSIS

 #include <pthread.h>

 int pthread_setcancelstate(int state, int *oldstate);

 int pthread_setcanceltype(int type, int *oldtype);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_setcancelstate() sets the cancelability state of the call?

 ing thread to the value given in state. The previous cancelability

 state of the thread is returned in the buffer pointed to by oldstate.

 The state argument must have one of the following values:

 PTHREAD_CANCEL_ENABLE

 The thread is cancelable. This is the default cancelability

 state in all new threads, including the initial thread. The

 thread's cancelability type determines when a cancelable thread Page 1/4

 will respond to a cancellation request.

 PTHREAD_CANCEL_DISABLE

 The thread is not cancelable. If a cancellation request is re?

 ceived, it is blocked until cancelability is enabled.

 The pthread_setcanceltype() sets the cancelability type of the calling

 thread to the value given in type. The previous cancelability type of

 the thread is returned in the buffer pointed to by oldtype. The type

 argument must have one of the following values:

 PTHREAD_CANCEL_DEFERRED

 A cancellation request is deferred until the thread next calls a

 function that is a cancellation point (see pthreads(7)). This

 is the default cancelability type in all new threads, including

 the initial thread.

 Even with deferred cancellation, a cancellation point in an

 asynchronous signal handler may still be acted upon and the ef?

 fect is as if it was an asynchronous cancellation.

 PTHREAD_CANCEL_ASYNCHRONOUS

 The thread can be canceled at any time. (Typically, it will be

 canceled immediately upon receiving a cancellation request, but

 the system doesn't guarantee this.)

 The set-and-get operation performed by each of these functions is

 atomic with respect to other threads in the process calling the same

 function.

RETURN VALUE

 On success, these functions return 0; on error, they return a nonzero

 error number.

ERRORS

 The pthread_setcancelstate() can fail with the following error:

 EINVAL Invalid value for state.

 The pthread_setcanceltype() can fail with the following error:

 EINVAL Invalid value for type.

ATTRIBUTES

 For an explanation of the terms used in this section, see at? Page 2/4

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?pthread_setcancelstate(), ? Thread safety ? MT-Safe ?

 ?pthread_setcanceltype() ? ? ?

 ??

 ?pthread_setcancelstate(), ? Async-cancel-safety ? AC-Safe ?

 ?pthread_setcanceltype() ? ? ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 For details of what happens when a thread is canceled, see pthread_can?

 cel(3).

 Briefly disabling cancelability is useful if a thread performs some

 critical action that must not be interrupted by a cancellation request.

 Beware of disabling cancelability for long periods, or around opera?

 tions that may block for long periods, since that will render the

 thread unresponsive to cancellation requests.

 Asynchronous cancelability

 Setting the cancelability type to PTHREAD_CANCEL_ASYNCHRONOUS is rarely

 useful. Since the thread could be canceled at any time, it cannot

 safely reserve resources (e.g., allocating memory with malloc(3)), ac?

 quire mutexes, semaphores, or locks, and so on. Reserving resources is

 unsafe because the application has no way of knowing what the state of

 these resources is when the thread is canceled; that is, did cancella?

 tion occur before the resources were reserved, while they were re?

 served, or after they were released? Furthermore, some internal data

 structures (e.g., the linked list of free blocks managed by the mal?

 loc(3) family of functions) may be left in an inconsistent state if

 cancellation occurs in the middle of the function call. Consequently,

 clean-up handlers cease to be useful. Page 3/4

 Functions that can be safely asynchronously canceled are called async-

 cancel-safe functions. POSIX.1-2001 and POSIX.1-2008 require only that

 pthread_cancel(3), pthread_setcancelstate(), and pthread_setcancel?

 type() be async-cancel-safe. In general, other library functions can't

 be safely called from an asynchronously cancelable thread.

 One of the few circumstances in which asynchronous cancelability is

 useful is for cancellation of a thread that is in a pure compute-bound

 loop.

 Portability notes

 The Linux threading implementations permit the oldstate argument of

 pthread_setcancelstate() to be NULL, in which case the information

 about the previous cancelability state is not returned to the caller.

 Many other implementations also permit a NULL oldstat argument, but

 POSIX.1 does not specify this point, so portable applications should

 always specify a non-NULL value in oldstate. A precisely analogous set

 of statements applies for the oldtype argument of pthread_setcancel?

 type().

EXAMPLES

 See pthread_cancel(3).

SEE ALSO

 pthread_cancel(3), pthread_cleanup_push(3), pthread_testcancel(3),

 pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_SETCANCELSTATE(3)

Page 4/4

