
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_mutexattr_getrobust.3'

$ man pthread_mutexattr_getrobust.3

PTHREAD_MUTEXATTR_SETROBUSTLinux Programmer's MaPTHREAD_MUTEXATTR_SETROBUST(3)

NAME

 pthread_mutexattr_getrobust, pthread_mutexattr_setrobust - get and set

 the robustness attribute of a mutex attributes object

SYNOPSIS

 #include <pthread.h>

 int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,

 int *robustness);

 int pthread_mutexattr_setrobust(const pthread_mutexattr_t *attr,

 int robustness);

 Compile and link with -pthread.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust():

 _POSIX_C_SOURCE >= 200809L

DESCRIPTION

 The pthread_mutexattr_getrobust() function places the value of the ro?

 bustness attribute of the mutex attributes object referred to by attr

 in *robustness. The pthread_mutexattr_setrobust() function sets the Page 1/6

 value of the robustness attribute of the mutex attributes object re?

 ferred to by attr to the value specified in *robustness.

 The robustness attribute specifies the behavior of the mutex when the

 owning thread dies without unlocking the mutex. The following values

 are valid for robustness:

 PTHREAD_MUTEX_STALLED

 This is the default value for a mutex attributes object. If a

 mutex is initialized with the PTHREAD_MUTEX_STALLED attribute

 and its owner dies without unlocking it, the mutex remains

 locked afterwards and any future attempts to call pthread_mu?

 tex_lock(3) on the mutex will block indefinitely.

 PTHREAD_MUTEX_ROBUST

 If a mutex is initialized with the PTHREAD_MUTEX_ROBUST attri?

 bute and its owner dies without unlocking it, any future at?

 tempts to call pthread_mutex_lock(3) on this mutex will succeed

 and return EOWNERDEAD to indicate that the original owner no

 longer exists and the mutex is in an inconsistent state. Usu?

 ally after EOWNERDEAD is returned, the next owner should call

 pthread_mutex_consistent(3) on the acquired mutex to make it

 consistent again before using it any further.

 If the next owner unlocks the mutex using pthread_mutex_un?

 lock(3) before making it consistent, the mutex will be perma?

 nently unusable and any subsequent attempts to lock it using

 pthread_mutex_lock(3) will fail with the error ENOTRECOVERABLE.

 The only permitted operation on such a mutex is pthread_mu?

 tex_destroy(3).

 If the next owner terminates before calling pthread_mutex_con?

 sistent(3), further pthread_mutex_lock(3) operations on this mu?

 tex will still return EOWNERDEAD.

 Note that the attr argument of pthread_mutexattr_getrobust() and

 pthread_mutexattr_setrobust() should refer to a mutex attributes object

 that was initialized by pthread_mutexattr_init(3), otherwise the behav?

 ior is undefined. Page 2/6

RETURN VALUE

 On success, these functions return 0. On error, they return a positive

 error number.

 In the glibc implementation, pthread_mutexattr_getrobust() always re?

 turn zero.

ERRORS

 EINVAL A value other than PTHREAD_MUTEX_STALLED or PTHREAD_MUTEX_ROBUST

 was passed to pthread_mutexattr_setrobust().

VERSIONS

 pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() were

 added to glibc in version 2.12.

CONFORMING TO

 POSIX.1-2008.

NOTES

 In the Linux implementation, when using process-shared robust mutexes,

 a waiting thread also receives the EOWNERDEAD notification if the owner

 of a robust mutex performs an execve(2) without first unlocking the mu?

 tex. POSIX.1 does not specify this detail, but the same behavior also

 occurs in at least some other implementations.

 Before the addition of pthread_mutexattr_getrobust() and pthread_mutex?

 attr_setrobust() to POSIX, glibc defined the following equivalent non?

 standard functions if _GNU_SOURCE was defined:

 int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr,

 int *robustness);

 int pthread_mutexattr_setrobust_np(const pthread_mutexattr_t *attr,

 int robustness);

 Correspondingly, the constants PTHREAD_MUTEX_STALLED_NP and PTHREAD_MU?

 TEX_ROBUST_NP were also defined.

 These GNU-specific APIs, which first appeared in glibc 2.4, are nowa?

 days obsolete and should not be used in new programs.

EXAMPLES

 The program below demonstrates the use of the robustness attribute of a

 mutex attributes object. In this program, a thread holding the mutex Page 3/6

 dies prematurely without unlocking the mutex. The main thread subse?

 quently acquires the mutex successfully and gets the error EOWNERDEAD,

 after which it makes the mutex consistent.

 The following shell session shows what we see when running this pro?

 gram:

 $./a.out

 [original owner] Setting lock...

 [original owner] Locked. Now exiting without unlocking.

 [main] Attempting to lock the robust mutex.

 [main] pthread_mutex_lock() returned EOWNERDEAD

 [main] Now make the mutex consistent

 [main] Mutex is now consistent; unlocking

 Program source

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <pthread.h>

 #include <errno.h>

 #define handle_error_en(en, msg) \

 do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

 static pthread_mutex_t mtx;

 static void *

 original_owner_thread(void *ptr)

 {

 printf("[original owner] Setting lock...\n");

 pthread_mutex_lock(&mtx);

 printf("[original owner] Locked. Now exiting without unlocking.\n");

 pthread_exit(NULL);

 }

 int

 main(int argc, char *argv[])

 {

 pthread_t thr; Page 4/6

 pthread_mutexattr_t attr;

 int s;

 pthread_mutexattr_init(&attr);

 /* initialize the attributes object */

 pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);

 /* set robustness */

 pthread_mutex_init(&mtx, &attr); /* initialize the mutex */

 pthread_create(&thr, NULL, original_owner_thread, NULL);

 sleep(2);

 /* "original_owner_thread" should have exited by now */

 printf("[main] Attempting to lock the robust mutex.\n");

 s = pthread_mutex_lock(&mtx);

 if (s == EOWNERDEAD) {

 printf("[main] pthread_mutex_lock() returned EOWNERDEAD\n");

 printf("[main] Now make the mutex consistent\n");

 s = pthread_mutex_consistent(&mtx);

 if (s != 0)

 handle_error_en(s, "pthread_mutex_consistent");

 printf("[main] Mutex is now consistent; unlocking\n");

 s = pthread_mutex_unlock(&mtx);

 if (s != 0)

 handle_error_en(s, "pthread_mutex_unlock");

 exit(EXIT_SUCCESS);

 } else if (s == 0) {

 printf("[main] pthread_mutex_lock() unexpectedly succeeded\n");

 exit(EXIT_FAILURE);

 } else {

 printf("[main] pthread_mutex_lock() unexpectedly failed\n");

 handle_error_en(s, "pthread_mutex_lock");

 }

 }

SEE ALSO

 get_robust_list(2), set_robust_list(2), pthread_mutex_consistent(3), Page 5/6

 pthread_mutex_init(3), pthread_mutex_lock(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_MUTEXATTR_SETROBUST(3)

Page 6/6

