
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_cancel.3'

$ man pthread_cancel.3

PTHREAD_CANCEL(3) Linux Programmer's Manual PTHREAD_CANCEL(3)

NAME

 pthread_cancel - send a cancellation request to a thread

SYNOPSIS

 #include <pthread.h>

 int pthread_cancel(pthread_t thread);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_cancel() function sends a cancellation request to the

 thread thread. Whether and when the target thread reacts to the can?

 cellation request depends on two attributes that are under the control

 of that thread: its cancelability state and type.

 A thread's cancelability state, determined by pthread_setcancel?

 state(3), can be enabled (the default for new threads) or disabled. If

 a thread has disabled cancellation, then a cancellation request remains

 queued until the thread enables cancellation. If a thread has enabled

 cancellation, then its cancelability type determines when cancellation

 occurs. Page 1/5

 A thread's cancellation type, determined by pthread_setcanceltype(3),

 may be either asynchronous or deferred (the default for new threads).

 Asynchronous cancelability means that the thread can be canceled at any

 time (usually immediately, but the system does not guarantee this).

 Deferred cancelability means that cancellation will be delayed until

 the thread next calls a function that is a cancellation point. A list

 of functions that are or may be cancellation points is provided in

 pthreads(7).

 When a cancellation requested is acted on, the following steps occur

 for thread (in this order):

 1. Cancellation clean-up handlers are popped (in the reverse of the or?

 der in which they were pushed) and called. (See

 pthread_cleanup_push(3).)

 2. Thread-specific data destructors are called, in an unspecified or?

 der. (See pthread_key_create(3).)

 3. The thread is terminated. (See pthread_exit(3).)

 The above steps happen asynchronously with respect to the pthread_can?

 cel() call; the return status of pthread_cancel() merely informs the

 caller whether the cancellation request was successfully queued.

 After a canceled thread has terminated, a join with that thread using

 pthread_join(3) obtains PTHREAD_CANCELED as the thread's exit status.

 (Joining with a thread is the only way to know that cancellation has

 completed.)

RETURN VALUE

 On success, pthread_cancel() returns 0; on error, it returns a nonzero

 error number.

ERRORS

 ESRCH No thread with the ID thread could be found.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ? Page 2/5

 ???

 ?pthread_cancel() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 On Linux, cancellation is implemented using signals. Under the NPTL

 threading implementation, the first real-time signal (i.e., signal 32)

 is used for this purpose. On LinuxThreads, the second real-time signal

 is used, if real-time signals are available, otherwise SIGUSR2 is used.

EXAMPLES

 The program below creates a thread and then cancels it. The main

 thread joins with the canceled thread to check that its exit status was

 PTHREAD_CANCELED. The following shell session shows what happens when

 we run the program:

 $./a.out

 thread_func(): started; cancellation disabled

 main(): sending cancellation request

 thread_func(): about to enable cancellation

 main(): thread was canceled

 Program source

 #include <pthread.h>

 #include <stdio.h>

 #include <errno.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define handle_error_en(en, msg) \

 do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

 static void *

 thread_func(void *ignored_argument)

 {

 int s;

 /* Disable cancellation for a while, so that we don't Page 3/5

 immediately react to a cancellation request */

 s = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

 if (s != 0)

 handle_error_en(s, "pthread_setcancelstate");

 printf("thread_func(): started; cancellation disabled\n");

 sleep(5);

 printf("thread_func(): about to enable cancellation\n");

 s = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

 if (s != 0)

 handle_error_en(s, "pthread_setcancelstate");

 /* sleep() is a cancellation point */

 sleep(1000); /* Should get canceled while we sleep */

 /* Should never get here */

 printf("thread_func(): not canceled!\n");

 return NULL;

 }

 int

 main(void)

 {

 pthread_t thr;

 void *res;

 int s;

 /* Start a thread and then send it a cancellation request */

 s = pthread_create(&thr, NULL, &thread_func, NULL);

 if (s != 0)

 handle_error_en(s, "pthread_create");

 sleep(2); /* Give thread a chance to get started */

 printf("main(): sending cancellation request\n");

 s = pthread_cancel(thr);

 if (s != 0)

 handle_error_en(s, "pthread_cancel");

 /* Join with thread to see what its exit status was */

 s = pthread_join(thr, &res); Page 4/5

 if (s != 0)

 handle_error_en(s, "pthread_join");

 if (res == PTHREAD_CANCELED)

 printf("main(): thread was canceled\n");

 else

 printf("main(): thread wasn't canceled (shouldn't happen!)\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 pthread_cleanup_push(3), pthread_create(3), pthread_exit(3),

 pthread_join(3), pthread_key_create(3), pthread_setcancelstate(3),

 pthread_setcanceltype(3), pthread_testcancel(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_CANCEL(3)

Page 5/5

