
Rocky Enterprise Linux 9.2 Manual Pages on command 'pselect.2'

$ man pselect.2

SELECT(2) Linux Programmer's Manual SELECT(2)

NAME

 select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - synchronous I/O

 multiplexing

SYNOPSIS

 #include <sys/select.h>

 int select(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, struct timeval *timeout);

 void FD_CLR(int fd, fd_set *set);

 int FD_ISSET(int fd, fd_set *set);

 void FD_SET(int fd, fd_set *set);

 void FD_ZERO(fd_set *set);

 int pselect(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, const struct timespec *timeout,

 const sigset_t *sigmask);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 pselect(): _POSIX_C_SOURCE >= 200112L

DESCRIPTION Page 1/11

 select() allows a program to monitor multiple file descriptors, waiting

 until one or more of the file descriptors become "ready" for some class

 of I/O operation (e.g., input possible). A file descriptor is consid?

 ered ready if it is possible to perform a corresponding I/O operation

 (e.g., read(2), or a sufficiently small write(2)) without blocking.

 select() can monitor only file descriptors numbers that are less than

 FD_SETSIZE; poll(2) and epoll(7) do not have this limitation. See

 BUGS.

 File descriptor sets

 The principal arguments of select() are three "sets" of file descrip?

 tors (declared with the type fd_set), which allow the caller to wait

 for three classes of events on the specified set of file descriptors.

 Each of the fd_set arguments may be specified as NULL if no file de?

 scriptors are to be watched for the corresponding class of events.

 Note well: Upon return, each of the file descriptor sets is modified in

 place to indicate which file descriptors are currently "ready". Thus,

 if using select() within a loop, the sets must be reinitialized before

 each call. The implementation of the fd_set arguments as value-result

 arguments is a design error that is avoided in poll(2) and epoll(7).

 The contents of a file descriptor set can be manipulated using the fol?

 lowing macros:

 FD_ZERO()

 This macro clears (removes all file descriptors from) set. It

 should be employed as the first step in initializing a file de?

 scriptor set.

 FD_SET()

 This macro adds the file descriptor fd to set. Adding a file

 descriptor that is already present in the set is a no-op, and

 does not produce an error.

 FD_CLR()

 This macro removes the file descriptor fd from set. Removing a

 file descriptor that is not present in the set is a no-op, and

 does not produce an error. Page 2/11

 FD_ISSET()

 select() modifies the contents of the sets according to the

 rules described below. After calling select(), the FD_ISSET()

 macro can be used to test if a file descriptor is still present

 in a set. FD_ISSET() returns nonzero if the file descriptor fd

 is present in set, and zero if it is not.

 Arguments

 The arguments of select() are as follows:

 readfds

 The file descriptors in this set are watched to see if they are

 ready for reading. A file descriptor is ready for reading if a

 read operation will not block; in particular, a file descriptor

 is also ready on end-of-file.

 After select() has returned, readfds will be cleared of all file

 descriptors except for those that are ready for reading.

 writefds

 The file descriptors in this set are watched to see if they are

 ready for writing. A file descriptor is ready for writing if a

 write operation will not block. However, even if a file de?

 scriptor indicates as writable, a large write may still block.

 After select() has returned, writefds will be cleared of all

 file descriptors except for those that are ready for writing.

 exceptfds

 The file descriptors in this set are watched for "exceptional

 conditions". For examples of some exceptional conditions, see

 the discussion of POLLPRI in poll(2).

 After select() has returned, exceptfds will be cleared of all

 file descriptors except for those for which an exceptional con?

 dition has occurred.

 nfds This argument should be set to the highest-numbered file de?

 scriptor in any of the three sets, plus 1. The indicated file

 descriptors in each set are checked, up to this limit (but see

 BUGS). Page 3/11

 timeout

 The timeout argument is a timeval structure (shown below) that

 specifies the interval that select() should block waiting for a

 file descriptor to become ready. The call will block until ei?

 ther:

 ? a file descriptor becomes ready;

 ? the call is interrupted by a signal handler; or

 ? the timeout expires.

 Note that the timeout interval will be rounded up to the system

 clock granularity, and kernel scheduling delays mean that the

 blocking interval may overrun by a small amount.

 If both fields of the timeval structure are zero, then select()

 returns immediately. (This is useful for polling.)

 If timeout is specified as NULL, select() blocks indefinitely

 waiting for a file descriptor to become ready.

 pselect()

 The pselect() system call allows an application to safely wait until

 either a file descriptor becomes ready or until a signal is caught.

 The operation of select() and pselect() is identical, other than these

 three differences:

 ? select() uses a timeout that is a struct timeval (with seconds and

 microseconds), while pselect() uses a struct timespec (with seconds

 and nanoseconds).

 ? select() may update the timeout argument to indicate how much time

 was left. pselect() does not change this argument.

 ? select() has no sigmask argument, and behaves as pselect() called

 with NULL sigmask.

 sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is

 not NULL, then pselect() first replaces the current signal mask by the

 one pointed to by sigmask, then does the "select" function, and then

 restores the original signal mask. (If sigmask is NULL, the signal

 mask is not modified during the pselect() call.)

 Other than the difference in the precision of the timeout argument, the Page 4/11

 following pselect() call:

 ready = pselect(nfds, &readfds, &writefds, &exceptfds,

 timeout, &sigmask);

 is equivalent to atomically executing the following calls:

 sigset_t origmask;

 pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);

 ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);

 pthread_sigmask(SIG_SETMASK, &origmask, NULL);

 The reason that pselect() is needed is that if one wants to wait for

 either a signal or for a file descriptor to become ready, then an

 atomic test is needed to prevent race conditions. (Suppose the signal

 handler sets a global flag and returns. Then a test of this global

 flag followed by a call of select() could hang indefinitely if the sig?

 nal arrived just after the test but just before the call. By contrast,

 pselect() allows one to first block signals, handle the signals that

 have come in, then call pselect() with the desired sigmask, avoiding

 the race.)

 The timeout

 The timeout argument for select() is a structure of the following type:

 struct timeval {

 time_t tv_sec; /* seconds */

 suseconds_t tv_usec; /* microseconds */

 };

 The corresponding argument for pselect() has the following type:

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

 On Linux, select() modifies timeout to reflect the amount of time not

 slept; most other implementations do not do this. (POSIX.1 permits ei?

 ther behavior.) This causes problems both when Linux code which reads

 timeout is ported to other operating systems, and when code is ported

 to Linux that reuses a struct timeval for multiple select()s in a loop Page 5/11

 without reinitializing it. Consider timeout to be undefined after se?

 lect() returns.

RETURN VALUE

 On success, select() and pselect() return the number of file descrip?

 tors contained in the three returned descriptor sets (that is, the to?

 tal number of bits that are set in readfds, writefds, exceptfds). The

 return value may be zero if the timeout expired before any file de?

 scriptors became ready.

 On error, -1 is returned, and errno is set to indicate the error; the

 file descriptor sets are unmodified, and timeout becomes undefined.

ERRORS

 EBADF An invalid file descriptor was given in one of the sets. (Per?

 haps a file descriptor that was already closed, or one on which

 an error has occurred.) However, see BUGS.

 EINTR A signal was caught; see signal(7).

 EINVAL nfds is negative or exceeds the RLIMIT_NOFILE resource limit

 (see getrlimit(2)).

 EINVAL The value contained within timeout is invalid.

 ENOMEM Unable to allocate memory for internal tables.

VERSIONS

 pselect() was added to Linux in kernel 2.6.16. Prior to this, pse?

 lect() was emulated in glibc (but see BUGS).

CONFORMING TO

 select() conforms to POSIX.1-2001, POSIX.1-2008, and 4.4BSD (select()

 first appeared in 4.2BSD). Generally portable to/from non-BSD systems

 supporting clones of the BSD socket layer (including System V vari?

 ants). However, note that the System V variant typically sets the

 timeout variable before returning, but the BSD variant does not.

 pselect() is defined in POSIX.1g, and in POSIX.1-2001 and POSIX.1-2008.

NOTES

 An fd_set is a fixed size buffer. Executing FD_CLR() or FD_SET() with

 a value of fd that is negative or is equal to or larger than FD_SETSIZE

 will result in undefined behavior. Moreover, POSIX requires fd to be a Page 6/11

 valid file descriptor.

 The operation of select() and pselect() is not affected by the O_NON?

 BLOCK flag.

 On some other UNIX systems, select() can fail with the error EAGAIN if

 the system fails to allocate kernel-internal resources, rather than

 ENOMEM as Linux does. POSIX specifies this error for poll(2), but not

 for select(). Portable programs may wish to check for EAGAIN and loop,

 just as with EINTR.

 The self-pipe trick

 On systems that lack pselect(), reliable (and more portable) signal

 trapping can be achieved using the self-pipe trick. In this technique,

 a signal handler writes a byte to a pipe whose other end is monitored

 by select() in the main program. (To avoid possibly blocking when

 writing to a pipe that may be full or reading from a pipe that may be

 empty, nonblocking I/O is used when reading from and writing to the

 pipe.)

 Emulating usleep(3)

 Before the advent of usleep(3), some code employed a call to select()

 with all three sets empty, nfds zero, and a non-NULL timeout as a

 fairly portable way to sleep with subsecond precision.

 Correspondence between select() and poll() notifications

 Within the Linux kernel source, we find the following definitions which

 show the correspondence between the readable, writable, and exceptional

 condition notifications of select() and the event notifications pro?

 vided by poll(2) and epoll(7):

 #define POLLIN_SET (EPOLLRDNORM | EPOLLRDBAND | EPOLLIN |

 EPOLLHUP | EPOLLERR)

 /* Ready for reading */

 #define POLLOUT_SET (EPOLLWRBAND | EPOLLWRNORM | EPOLLOUT |

 EPOLLERR)

 /* Ready for writing */

 #define POLLEX_SET (EPOLLPRI)

 /* Exceptional condition */ Page 7/11

 Multithreaded applications

 If a file descriptor being monitored by select() is closed in another

 thread, the result is unspecified. On some UNIX systems, select() un?

 blocks and returns, with an indication that the file descriptor is

 ready (a subsequent I/O operation will likely fail with an error, un?

 less another process reopens file descriptor between the time select()

 returned and the I/O operation is performed). On Linux (and some other

 systems), closing the file descriptor in another thread has no effect

 on select(). In summary, any application that relies on a particular

 behavior in this scenario must be considered buggy.

 C library/kernel differences

 The Linux kernel allows file descriptor sets of arbitrary size, deter?

 mining the length of the sets to be checked from the value of nfds.

 However, in the glibc implementation, the fd_set type is fixed in size.

 See also BUGS.

 The pselect() interface described in this page is implemented by glibc.

 The underlying Linux system call is named pselect6(). This system call

 has somewhat different behavior from the glibc wrapper function.

 The Linux pselect6() system call modifies its timeout argument. How?

 ever, the glibc wrapper function hides this behavior by using a local

 variable for the timeout argument that is passed to the system call.

 Thus, the glibc pselect() function does not modify its timeout argu?

 ment; this is the behavior required by POSIX.1-2001.

 The final argument of the pselect6() system call is not a sigset_t *

 pointer, but is instead a structure of the form:

 struct {

 const kernel_sigset_t *ss; /* Pointer to signal set */

 size_t ss_len; /* Size (in bytes) of object

 pointed to by 'ss' */

 };

 This allows the system call to obtain both a pointer to the signal set

 and its size, while allowing for the fact that most architectures sup?

 port a maximum of 6 arguments to a system call. See sigprocmask(2) for Page 8/11

 a discussion of the difference between the kernel and libc notion of

 the signal set.

 Historical glibc details

 Glibc 2.0 provided an incorrect version of pselect() that did not take

 a sigmask argument.

 In glibc versions 2.1 to 2.2.1, one must define _GNU_SOURCE in order to

 obtain the declaration of pselect() from <sys/select.h>.

BUGS

 POSIX allows an implementation to define an upper limit, advertised via

 the constant FD_SETSIZE, on the range of file descriptors that can be

 specified in a file descriptor set. The Linux kernel imposes no fixed

 limit, but the glibc implementation makes fd_set a fixed-size type,

 with FD_SETSIZE defined as 1024, and the FD_*() macros operating ac?

 cording to that limit. To monitor file descriptors greater than 1023,

 use poll(2) or epoll(7) instead.

 According to POSIX, select() should check all specified file descrip?

 tors in the three file descriptor sets, up to the limit nfds-1. How?

 ever, the current implementation ignores any file descriptor in these

 sets that is greater than the maximum file descriptor number that the

 process currently has open. According to POSIX, any such file descrip?

 tor that is specified in one of the sets should result in the error

 EBADF.

 Starting with version 2.1, glibc provided an emulation of pselect()

 that was implemented using sigprocmask(2) and select(). This implemen?

 tation remained vulnerable to the very race condition that pselect()

 was designed to prevent. Modern versions of glibc use the (race-free)

 pselect() system call on kernels where it is provided.

 On Linux, select() may report a socket file descriptor as "ready for

 reading", while nevertheless a subsequent read blocks. This could for

 example happen when data has arrived but upon examination has the wrong

 checksum and is discarded. There may be other circumstances in which a

 file descriptor is spuriously reported as ready. Thus it may be safer

 to use O_NONBLOCK on sockets that should not block. Page 9/11

 On Linux, select() also modifies timeout if the call is interrupted by

 a signal handler (i.e., the EINTR error return). This is not permitted

 by POSIX.1. The Linux pselect() system call has the same behavior, but

 the glibc wrapper hides this behavior by internally copying the timeout

 to a local variable and passing that variable to the system call.

EXAMPLES

 #include <stdio.h>

 #include <stdlib.h>

 #include <sys/select.h>

 int

 main(void)

 {

 fd_set rfds;

 struct timeval tv;

 int retval;

 /* Watch stdin (fd 0) to see when it has input. */

 FD_ZERO(&rfds);

 FD_SET(0, &rfds);

 /* Wait up to five seconds. */

 tv.tv_sec = 5;

 tv.tv_usec = 0;

 retval = select(1, &rfds, NULL, NULL, &tv);

 /* Don't rely on the value of tv now! */

 if (retval == -1)

 perror("select()");

 else if (retval)

 printf("Data is available now.\n");

 /* FD_ISSET(0, &rfds) will be true. */

 else

 printf("No data within five seconds.\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 10/11

 accept(2), connect(2), poll(2), read(2), recv(2), restart_syscall(2),

 send(2), sigprocmask(2), write(2), epoll(7), time(7)

 For a tutorial with discussion and examples, see select_tut(2).

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SELECT(2)

Page 11/11

