
Rocky Enterprise Linux 9.2 Manual Pages on command 'procfs.5'

$ man procfs.5

PROC(5) Linux Programmer's Manual PROC(5)

NAME

 proc - process information pseudo-filesystem

DESCRIPTION

 The proc filesystem is a pseudo-filesystem which provides an interface

 to kernel data structures. It is commonly mounted at /proc. Typi?

 cally, it is mounted automatically by the system, but it can also be

 mounted manually using a command such as:

 mount -t proc proc /proc

 Most of the files in the proc filesystem are read-only, but some files

 are writable, allowing kernel variables to be changed.

 Mount options

 The proc filesystem supports the following mount options:

 hidepid=n (since Linux 3.3)

 This option controls who can access the information in

 /proc/[pid] directories. The argument, n, is one of the follow?

 ing values:

 0 Everybody may access all /proc/[pid] directories. This is Page 1/106

 the traditional behavior, and the default if this mount op?

 tion is not specified.

 1 Users may not access files and subdirectories inside any

 /proc/[pid] directories but their own (the /proc/[pid] di?

 rectories themselves remain visible). Sensitive files such

 as /proc/[pid]/cmdline and /proc/[pid]/status are now pro?

 tected against other users. This makes it impossible to

 learn whether any user is running a specific program (so

 long as the program doesn't otherwise reveal itself by its

 behavior).

 2 As for mode 1, but in addition the /proc/[pid] directories

 belonging to other users become invisible. This means that

 /proc/[pid] entries can no longer be used to discover the

 PIDs on the system. This doesn't hide the fact that a

 process with a specific PID value exists (it can be learned

 by other means, for example, by "kill -0 $PID"), but it

 hides a process's UID and GID, which could otherwise be

 learned by employing stat(2) on a /proc/[pid] directory.

 This greatly complicates an attacker's task of gathering in?

 formation about running processes (e.g., discovering whether

 some daemon is running with elevated privileges, whether an?

 other user is running some sensitive program, whether other

 users are running any program at all, and so on).

 gid=gid (since Linux 3.3)

 Specifies the ID of a group whose members are authorized to

 learn process information otherwise prohibited by hidepid (i.e.,

 users in this group behave as though /proc was mounted with

 hidepid=0). This group should be used instead of approaches

 such as putting nonroot users into the sudoers(5) file.

 Overview

 Underneath /proc, there are the following general groups of files and

 subdirectories:

 /proc/[pid] subdirectories Page 2/106

 Each one of these subdirectories contains files and subdirecto?

 ries exposing information about the process with the correspond?

 ing process ID.

 Underneath each of the /proc/[pid] directories, a task subdirec?

 tory contains subdirectories of the form task/[tid], which con?

 tain corresponding information about each of the threads in the

 process, where tid is the kernel thread ID of the thread.

 The /proc/[pid] subdirectories are visible when iterating

 through /proc with getdents(2) (and thus are visible when one

 uses ls(1) to view the contents of /proc).

 /proc/[tid] subdirectories

 Each one of these subdirectories contains files and subdirecto?

 ries exposing information about the thread with the correspond?

 ing thread ID. The contents of these directories are the same

 as the corresponding /proc/[pid]/task/[tid] directories.

 The /proc/[tid] subdirectories are not visible when iterating

 through /proc with getdents(2) (and thus are not visible when

 one uses ls(1) to view the contents of /proc).

 /proc/self

 When a process accesses this magic symbolic link, it resolves to

 the process's own /proc/[pid] directory.

 /proc/thread-self

 When a thread accesses this magic symbolic link, it resolves to

 the process's own /proc/self/task/[tid] directory.

 /proc/[a-z]*

 Various other files and subdirectories under /proc expose sys?

 tem-wide information.

 All of the above are described in more detail below.

 Files and directories

 The following list provides details of many of the files and directo?

 ries under the /proc hierarchy.

 /proc/[pid]

 There is a numerical subdirectory for each running process; the Page 3/106

 subdirectory is named by the process ID. Each /proc/[pid] sub?

 directory contains the pseudo-files and directories described

 below.

 The files inside each /proc/[pid] directory are normally owned

 by the effective user and effective group ID of the process.

 However, as a security measure, the ownership is made root:root

 if the process's "dumpable" attribute is set to a value other

 than 1.

 Before Linux 4.11, root:root meant the "global" root user ID and

 group ID (i.e., UID 0 and GID 0 in the initial user namespace).

 Since Linux 4.11, if the process is in a noninitial user name?

 space that has a valid mapping for user (group) ID 0 inside the

 namespace, then the user (group) ownership of the files under

 /proc/[pid] is instead made the same as the root user (group) ID

 of the namespace. This means that inside a container, things

 work as expected for the container "root" user.

 The process's "dumpable" attribute may change for the following

 reasons:

 * The attribute was explicitly set via the prctl(2)

 PR_SET_DUMPABLE operation.

 * The attribute was reset to the value in the file

 /proc/sys/fs/suid_dumpable (described below), for the reasons

 described in prctl(2).

 Resetting the "dumpable" attribute to 1 reverts the ownership of

 the /proc/[pid]/* files to the process's effective UID and GID.

 Note, however, that if the effective UID or GID is subsequently

 modified, then the "dumpable" attribute may be reset, as de?

 scribed in prctl(2). Therefore, it may be desirable to reset

 the "dumpable" attribute after making any desired changes to the

 process's effective UID or GID.

 /proc/[pid]/attr

 The files in this directory provide an API for security modules.

 The contents of this directory are files that can be read and Page 4/106

 written in order to set security-related attributes. This di?

 rectory was added to support SELinux, but the intention was that

 the API be general enough to support other security modules.

 For the purpose of explanation, examples of how SELinux uses

 these files are provided below.

 This directory is present only if the kernel was configured with

 CONFIG_SECURITY.

 /proc/[pid]/attr/current (since Linux 2.6.0)

 The contents of this file represent the current security at?

 tributes of the process.

 In SELinux, this file is used to get the security context of a

 process. Prior to Linux 2.6.11, this file could not be used to

 set the security context (a write was always denied), since

 SELinux limited process security transitions to execve(2) (see

 the description of /proc/[pid]/attr/exec, below). Since Linux

 2.6.11, SELinux lifted this restriction and began supporting

 "set" operations via writes to this node if authorized by pol?

 icy, although use of this operation is only suitable for appli?

 cations that are trusted to maintain any desired separation be?

 tween the old and new security contexts.

 Prior to Linux 2.6.28, SELinux did not allow threads within a

 multithreaded process to set their security context via this

 node as it would yield an inconsistency among the security con?

 texts of the threads sharing the same memory space. Since Linux

 2.6.28, SELinux lifted this restriction and began supporting

 "set" operations for threads within a multithreaded process if

 the new security context is bounded by the old security context,

 where the bounded relation is defined in policy and guarantees

 that the new security context has a subset of the permissions of

 the old security context.

 Other security modules may choose to support "set" operations

 via writes to this node.

 /proc/[pid]/attr/exec (since Linux 2.6.0) Page 5/106

 This file represents the attributes to assign to the process

 upon a subsequent execve(2).

 In SELinux, this is needed to support role/domain transitions,

 and execve(2) is the preferred point to make such transitions

 because it offers better control over the initialization of the

 process in the new security label and the inheritance of state.

 In SELinux, this attribute is reset on execve(2) so that the new

 program reverts to the default behavior for any execve(2) calls

 that it may make. In SELinux, a process can set only its own

 /proc/[pid]/attr/exec attribute.

 /proc/[pid]/attr/fscreate (since Linux 2.6.0)

 This file represents the attributes to assign to files created

 by subsequent calls to open(2), mkdir(2), symlink(2), and

 mknod(2)

 SELinux employs this file to support creation of a file (using

 the aforementioned system calls) in a secure state, so that

 there is no risk of inappropriate access being obtained between

 the time of creation and the time that attributes are set. In

 SELinux, this attribute is reset on execve(2), so that the new

 program reverts to the default behavior for any file creation

 calls it may make, but the attribute will persist across multi?

 ple file creation calls within a program unless it is explicitly

 reset. In SELinux, a process can set only its own

 /proc/[pid]/attr/fscreate attribute.

 /proc/[pid]/attr/keycreate (since Linux 2.6.18)

 If a process writes a security context into this file, all sub?

 sequently created keys (add_key(2)) will be labeled with this

 context. For further information, see the kernel source file

 Documentation/security/keys/core.rst (or file Documentation/se?

 curity/keys.txt on Linux between 3.0 and 4.13, or Documenta?

 tion/keys.txt before Linux 3.0).

 /proc/[pid]/attr/prev (since Linux 2.6.0)

 This file contains the security context of the process before Page 6/106

 the last execve(2); that is, the previous value of

 /proc/[pid]/attr/current.

 /proc/[pid]/attr/socketcreate (since Linux 2.6.18)

 If a process writes a security context into this file, all sub?

 sequently created sockets will be labeled with this context.

 /proc/[pid]/autogroup (since Linux 2.6.38)

 See sched(7).

 /proc/[pid]/auxv (since 2.6.0)

 This contains the contents of the ELF interpreter information

 passed to the process at exec time. The format is one unsigned

 long ID plus one unsigned long value for each entry. The last

 entry contains two zeros. See also getauxval(3).

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/cgroup (since Linux 2.6.24)

 See cgroups(7).

 /proc/[pid]/clear_refs (since Linux 2.6.22)

 This is a write-only file, writable only by owner of the

 process.

 The following values may be written to the file:

 1 (since Linux 2.6.22)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all

 the pages associated with the process. (Before kernel

 2.6.32, writing any nonzero value to this file had this

 effect.)

 2 (since Linux 2.6.32)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all

 anonymous pages associated with the process.

 3 (since Linux 2.6.32)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all

 file-mapped pages associated with the process.

 Clearing the PG_Referenced and ACCESSED/YOUNG bits provides a

 method to measure approximately how much memory a process is us? Page 7/106

 ing. One first inspects the values in the "Referenced" fields

 for the VMAs shown in /proc/[pid]/smaps to get an idea of the

 memory footprint of the process. One then clears the PG_Refer?

 enced and ACCESSED/YOUNG bits and, after some measured time in?

 terval, once again inspects the values in the "Referenced"

 fields to get an idea of the change in memory footprint of the

 process during the measured interval. If one is interested only

 in inspecting the selected mapping types, then the value 2 or 3

 can be used instead of 1.

 Further values can be written to affect different properties:

 4 (since Linux 3.11)

 Clear the soft-dirty bit for all the pages associated

 with the process. This is used (in conjunction with

 /proc/[pid]/pagemap) by the check-point restore system to

 discover which pages of a process have been dirtied since

 the file /proc/[pid]/clear_refs was written to.

 5 (since Linux 4.0)

 Reset the peak resident set size ("high water mark") to

 the process's current resident set size value.

 Writing any value to /proc/[pid]/clear_refs other than those

 listed above has no effect.

 The /proc/[pid]/clear_refs file is present only if the CON?

 FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

 /proc/[pid]/cmdline

 This read-only file holds the complete command line for the

 process, unless the process is a zombie. In the latter case,

 there is nothing in this file: that is, a read on this file will

 return 0 characters. The command-line arguments appear in this

 file as a set of strings separated by null bytes ('\0'), with a

 further null byte after the last string.

 If, after an execve(2), the process modifies its argv strings,

 those changes will show up here. This is not the same thing as

 modifying the argv array. Page 8/106

 Furthermore, a process may change the memory location that this

 file refers via prctl(2) operations such as PR_SET_MM_ARG_START.

 Think of this file as the command line that the process wants

 you to see.

 /proc/[pid]/comm (since Linux 2.6.33)

 This file exposes the process's comm value?that is, the command

 name associated with the process. Different threads in the same

 process may have different comm values, accessible via

 /proc/[pid]/task/[tid]/comm. A thread may modify its comm

 value, or that of any of other thread in the same thread group

 (see the discussion of CLONE_THREAD in clone(2)), by writing to

 the file /proc/self/task/[tid]/comm. Strings longer than

 TASK_COMM_LEN (16) characters (including the terminating null

 byte) are silently truncated.

 This file provides a superset of the prctl(2) PR_SET_NAME and

 PR_GET_NAME operations, and is employed by pthread_setname_np(3)

 when used to rename threads other than the caller. The value in

 this file is used for the %e specifier in /proc/sys/ker?

 nel/core_pattern; see core(5).

 /proc/[pid]/coredump_filter (since Linux 2.6.23)

 See core(5).

 /proc/[pid]/cpuset (since Linux 2.6.12)

 See cpuset(7).

 /proc/[pid]/cwd

 This is a symbolic link to the current working directory of the

 process. To find out the current working directory of process

 20, for instance, you can do this:

 $ cd /proc/20/cwd; pwd -P

 In a multithreaded process, the contents of this symbolic link

 are not available if the main thread has already terminated

 (typically by calling pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic

 link is governed by a ptrace access mode PTRACE_MODE_READ_FS? Page 9/106

 CREDS check; see ptrace(2).

 /proc/[pid]/environ

 This file contains the initial environment that was set when the

 currently executing program was started via execve(2). The en?

 tries are separated by null bytes ('\0'), and there may be a

 null byte at the end. Thus, to print out the environment of

 process 1, you would do:

 $ cat /proc/1/environ | tr '\000' '\n'

 If, after an execve(2), the process modifies its environment

 (e.g., by calling functions such as putenv(3) or modifying the

 environ(7) variable directly), this file will not reflect those

 changes.

 Furthermore, a process may change the memory location that this

 file refers via prctl(2) operations such as PR_SET_MM_ENV_START.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/exe

 Under Linux 2.2 and later, this file is a symbolic link contain?

 ing the actual pathname of the executed command. This symbolic

 link can be dereferenced normally; attempting to open it will

 open the executable. You can even type /proc/[pid]/exe to run

 another copy of the same executable that is being run by process

 [pid]. If the pathname has been unlinked, the symbolic link

 will contain the string '(deleted)' appended to the original

 pathname. In a multithreaded process, the contents of this sym?

 bolic link are not available if the main thread has already ter?

 minated (typically by calling pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic

 link is governed by a ptrace access mode PTRACE_MODE_READ_FS?

 CREDS check; see ptrace(2).

 Under Linux 2.0 and earlier, /proc/[pid]/exe is a pointer to the

 binary which was executed, and appears as a symbolic link. A

 readlink(2) call on this file under Linux 2.0 returns a string Page 10/106

 in the format:

 [device]:inode

 For example, [0301]:1502 would be inode 1502 on device major 03

 (IDE, MFM, etc. drives) minor 01 (first partition on the first

 drive).

 find(1) with the -inum option can be used to locate the file.

 /proc/[pid]/fd/

 This is a subdirectory containing one entry for each file which

 the process has open, named by its file descriptor, and which is

 a symbolic link to the actual file. Thus, 0 is standard input,

 1 standard output, 2 standard error, and so on.

 For file descriptors for pipes and sockets, the entries will be

 symbolic links whose content is the file type with the inode. A

 readlink(2) call on this file returns a string in the format:

 type:[inode]

 For example, socket:[2248868] will be a socket and its inode is

 2248868. For sockets, that inode can be used to find more in?

 formation in one of the files under /proc/net/.

 For file descriptors that have no corresponding inode (e.g.,

 file descriptors produced by bpf(2), epoll_create(2),

 eventfd(2), inotify_init(2), perf_event_open(2), signalfd(2),

 timerfd_create(2), and userfaultfd(2)), the entry will be a sym?

 bolic link with contents of the form

 anon_inode:<file-type>

 In many cases (but not all), the file-type is surrounded by

 square brackets.

 For example, an epoll file descriptor will have a symbolic link

 whose content is the string anon_inode:[eventpoll].

 In a multithreaded process, the contents of this directory are

 not available if the main thread has already terminated (typi?

 cally by calling pthread_exit(3)).

 Programs that take a filename as a command-line argument, but

 don't take input from standard input if no argument is supplied, Page 11/106

 and programs that write to a file named as a command-line argu?

 ment, but don't send their output to standard output if no argu?

 ment is supplied, can nevertheless be made to use standard input

 or standard output by using /proc/[pid]/fd files as command-line

 arguments. For example, assuming that -i is the flag designat?

 ing an input file and -o is the flag designating an output file:

 $ foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...

 and you have a working filter.

 /proc/self/fd/N is approximately the same as /dev/fd/N in some

 UNIX and UNIX-like systems. Most Linux MAKEDEV scripts symboli?

 cally link /dev/fd to /proc/self/fd, in fact.

 Most systems provide symbolic links /dev/stdin, /dev/stdout, and

 /dev/stderr, which respectively link to the files 0, 1, and 2 in

 /proc/self/fd. Thus the example command above could be written

 as:

 $ foobar -i /dev/stdin -o /dev/stdout ...

 Permission to dereference or read (readlink(2)) the symbolic

 links in this directory is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 Note that for file descriptors referring to inodes (pipes and

 sockets, see above), those inodes still have permission bits and

 ownership information distinct from those of the /proc/[pid]/fd

 entry, and that the owner may differ from the user and group IDs

 of the process. An unprivileged process may lack permissions to

 open them, as in this example:

 $ echo test | sudo -u nobody cat

 test

 $ echo test | sudo -u nobody cat /proc/self/fd/0

 cat: /proc/self/fd/0: Permission denied

 File descriptor 0 refers to the pipe created by the shell and

 owned by that shell's user, which is not nobody, so cat does not

 have permission to create a new file descriptor to read from

 that inode, even though it can still read from its existing file Page 12/106

 descriptor 0.

 /proc/[pid]/fdinfo/ (since Linux 2.6.22)

 This is a subdirectory containing one entry for each file which

 the process has open, named by its file descriptor. The files

 in this directory are readable only by the owner of the process.

 The contents of each file can be read to obtain information

 about the corresponding file descriptor. The content depends on

 the type of file referred to by the corresponding file descrip?

 tor.

 For regular files and directories, we see something like:

 $ cat /proc/12015/fdinfo/4

 pos: 1000

 flags: 01002002

 mnt_id: 21

 The fields are as follows:

 pos This is a decimal number showing the file offset.

 flags This is an octal number that displays the file access

 mode and file status flags (see open(2)). If the close-

 on-exec file descriptor flag is set, then flags will also

 include the value O_CLOEXEC.

 Before Linux 3.1, this field incorrectly displayed the

 setting of O_CLOEXEC at the time the file was opened,

 rather than the current setting of the close-on-exec

 flag.

 mnt_id This field, present since Linux 3.15, is the ID of the

 mount point containing this file. See the description of

 /proc/[pid]/mountinfo.

 For eventfd file descriptors (see eventfd(2)), we see (since

 Linux 3.8) the following fields:

 pos: 0

 flags: 02

 mnt_id: 10

 eventfd-count: 40 Page 13/106

 eventfd-count is the current value of the eventfd counter, in

 hexadecimal.

 For epoll file descriptors (see epoll(7)), we see (since Linux

 3.8) the following fields:

 pos: 0

 flags: 02

 mnt_id: 10

 tfd: 9 events: 19 data: 74253d2500000009

 tfd: 7 events: 19 data: 74253d2500000007

 Each of the lines beginning tfd describes one of the file de?

 scriptors being monitored via the epoll file descriptor (see

 epoll_ctl(2) for some details). The tfd field is the number of

 the file descriptor. The events field is a hexadecimal mask of

 the events being monitored for this file descriptor. The data

 field is the data value associated with this file descriptor.

 For signalfd file descriptors (see signalfd(2)), we see (since

 Linux 3.8) the following fields:

 pos: 0

 flags: 02

 mnt_id: 10

 sigmask: 0000000000000006

 sigmask is the hexadecimal mask of signals that are accepted via

 this signalfd file descriptor. (In this example, bits 2 and 3

 are set, corresponding to the signals SIGINT and SIGQUIT; see

 signal(7).)

 For inotify file descriptors (see inotify(7)), we see (since

 Linux 3.8) the following fields:

 pos: 0

 flags: 00

 mnt_id: 11

 inotify wd:2 ino:7ef82a sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1

f_handle:2af87e00220ffd73

 inotify wd:1 ino:192627 sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1Page 14/106

f_handle:27261900802dfd73

 Each of the lines beginning with "inotify" displays information

 about one file or directory that is being monitored. The fields

 in this line are as follows:

 wd A watch descriptor number (in decimal).

 ino The inode number of the target file (in hexadecimal).

 sdev The ID of the device where the target file resides (in

 hexadecimal).

 mask The mask of events being monitored for the target file

 (in hexadecimal).

 If the kernel was built with exportfs support, the path to the

 target file is exposed as a file handle, via three hexadecimal

 fields: fhandle-bytes, fhandle-type, and f_handle.

 For fanotify file descriptors (see fanotify(7)), we see (since

 Linux 3.8) the following fields:

 pos: 0

 flags: 02

 mnt_id: 11

 fanotify flags:0 event-flags:88002

 fanotify ino:19264f sdev:800001 mflags:0 mask:1 ignored_mask:0 fhandle-bytes:8 fhandle-type:1

f_handle:4f261900a82dfd73

 The fourth line displays information defined when the fanotify

 group was created via fanotify_init(2):

 flags The flags argument given to fanotify_init(2) (expressed

 in hexadecimal).

 event-flags

 The event_f_flags argument given to fanotify_init(2) (ex?

 pressed in hexadecimal).

 Each additional line shown in the file contains information

 about one of the marks in the fanotify group. Most of these

 fields are as for inotify, except:

 mflags The flags associated with the mark (expressed in hexadec?

 imal). Page 15/106

 mask The events mask for this mark (expressed in hexadecimal).

 ignored_mask

 The mask of events that are ignored for this mark (ex?

 pressed in hexadecimal).

 For details on these fields, see fanotify_mark(2).

 For timerfd file descriptors (see timerfd(2)), we see (since

 Linux 3.17) the following fields:

 pos: 0

 flags: 02004002

 mnt_id: 13

 clockid: 0

 ticks: 0

 settime flags: 03

 it_value: (7695568592, 640020877)

 it_interval: (0, 0)

 clockid

 This is the numeric value of the clock ID (corresponding

 to one of the CLOCK_* constants defined via <time.h>)

 that is used to mark the progress of the timer (in this

 example, 0 is CLOCK_REALTIME).

 ticks This is the number of timer expirations that have oc?

 curred, (i.e., the value that read(2) on it would re?

 turn).

 settime flags

 This field lists the flags with which the timerfd was

 last armed (see timerfd_settime(2)), in octal (in this

 example, both TFD_TIMER_ABSTIME and TFD_TIMER_CAN?

 CEL_ON_SET are set).

 it_value

 This field contains the amount of time until the timer

 will next expire, expressed in seconds and nanoseconds.

 This is always expressed as a relative value, regardless

 of whether the timer was created using the TFD_TIMER_AB? Page 16/106

 STIME flag.

 it_interval

 This field contains the interval of the timer, in seconds

 and nanoseconds. (The it_value and it_interval fields

 contain the values that timerfd_gettime(2) on this file

 descriptor would return.)

 /proc/[pid]/gid_map (since Linux 3.5)

 See user_namespaces(7).

 /proc/[pid]/io (since kernel 2.6.20)

 This file contains I/O statistics for the process, for example:

 # cat /proc/3828/io

 rchar: 323934931

 wchar: 323929600

 syscr: 632687

 syscw: 632675

 read_bytes: 0

 write_bytes: 323932160

 cancelled_write_bytes: 0

 The fields are as follows:

 rchar: characters read

 The number of bytes which this task has caused to be read

 from storage. This is simply the sum of bytes which this

 process passed to read(2) and similar system calls. It

 includes things such as terminal I/O and is unaffected by

 whether or not actual physical disk I/O was required (the

 read might have been satisfied from pagecache).

 wchar: characters written

 The number of bytes which this task has caused, or shall

 cause to be written to disk. Similar caveats apply here

 as with rchar.

 syscr: read syscalls

 Attempt to count the number of read I/O operations?that

 is, system calls such as read(2) and pread(2). Page 17/106

 syscw: write syscalls

 Attempt to count the number of write I/O operations?that

 is, system calls such as write(2) and pwrite(2).

 read_bytes: bytes read

 Attempt to count the number of bytes which this process

 really did cause to be fetched from the storage layer.

 This is accurate for block-backed filesystems.

 write_bytes: bytes written

 Attempt to count the number of bytes which this process

 caused to be sent to the storage layer.

 cancelled_write_bytes:

 The big inaccuracy here is truncate. If a process writes

 1 MB to a file and then deletes the file, it will in fact

 perform no writeout. But it will have been accounted as

 having caused 1 MB of write. In other words: this field

 represents the number of bytes which this process caused

 to not happen, by truncating pagecache. A task can cause

 "negative" I/O too. If this task truncates some dirty

 pagecache, some I/O which another task has been accounted

 for (in its write_bytes) will not be happening.

 Note: In the current implementation, things are a bit racy on

 32-bit systems: if process A reads process B's /proc/[pid]/io

 while process B is updating one of these 64-bit counters,

 process A could see an intermediate result.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/limits (since Linux 2.6.24)

 This file displays the soft limit, hard limit, and units of mea?

 surement for each of the process's resource limits (see getr?

 limit(2)). Up to and including Linux 2.6.35, this file is pro?

 tected to allow reading only by the real UID of the process.

 Since Linux 2.6.36, this file is readable by all users on the

 system. Page 18/106

 /proc/[pid]/map_files/ (since kernel 3.3)

 This subdirectory contains entries corresponding to memory-

 mapped files (see mmap(2)). Entries are named by memory region

 start and end address pair (expressed as hexadecimal numbers),

 and are symbolic links to the mapped files themselves. Here is

 an example, with the output wrapped and reformatted to fit on an

 80-column display:

 # ls -l /proc/self/map_files/

 lr--------. 1 root root 64 Apr 16 21:31

 3252e00000-3252e20000 -> /usr/lib64/ld-2.15.so

 ...

 Although these entries are present for memory regions that were

 mapped with the MAP_FILE flag, the way anonymous shared memory

 (regions created with the MAP_ANON | MAP_SHARED flags) is imple?

 mented in Linux means that such regions also appear on this di?

 rectory. Here is an example where the target file is the

 deleted /dev/zero one:

 lrw-------. 1 root root 64 Apr 16 21:33

 7fc075d2f000-7fc075e6f000 -> /dev/zero (deleted)

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 Until kernel version 4.3, this directory appeared only if the

 CONFIG_CHECKPOINT_RESTORE kernel configuration option was en?

 abled.

 Capabilities are required to read the contents of the symbolic

 links in this directory: before Linux 5.9, the reading process

 requires CAP_SYS_ADMIN in the initial user namespace; since

 Linux 5.9, the reading process must have either CAP_SYS_ADMIN or

 CAP_CHECKPOINT_RESTORE in the user namespace where it resides.

 /proc/[pid]/maps

 A file containing the currently mapped memory regions and their

 access permissions. See mmap(2) for some further information

 about memory mappings. Page 19/106

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 The format of the file is:

 address perms offset dev inode pathname

 00400000-00452000 r-xp 00000000 08:02 173521 /usr/bin/dbus-daemon

 00651000-00652000 r--p 00051000 08:02 173521 /usr/bin/dbus-daemon

 00652000-00655000 rw-p 00052000 08:02 173521 /usr/bin/dbus-daemon

 00e03000-00e24000 rw-p 00000000 00:00 0 [heap]

 00e24000-011f7000 rw-p 00000000 00:00 0 [heap]

 ...

 35b1800000-35b1820000 r-xp 00000000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a1f000-35b1a20000 r--p 0001f000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a20000-35b1a21000 rw-p 00020000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a21000-35b1a22000 rw-p 00000000 00:00 0

 35b1c00000-35b1dac000 r-xp 00000000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1dac000-35b1fac000 ---p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1fac000-35b1fb0000 r--p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1fb0000-35b1fb2000 rw-p 001b0000 08:02 135870 /usr/lib64/libc-2.15.so

 ...

 f2c6ff8c000-7f2c7078c000 rw-p 00000000 00:00 0 [stack:986]

 ...

 7fffb2c0d000-7fffb2c2e000 rw-p 00000000 00:00 0 [stack]

 7fffb2d48000-7fffb2d49000 r-xp 00000000 00:00 0 [vdso]

 The address field is the address space in the process that the

 mapping occupies. The perms field is a set of permissions:

 r = read

 w = write

 x = execute

 s = shared

 p = private (copy on write)

 The offset field is the offset into the file/whatever; dev is

 the device (major:minor); inode is the inode on that device. 0

 indicates that no inode is associated with the memory region, as Page 20/106

 would be the case with BSS (uninitialized data).

 The pathname field will usually be the file that is backing the

 mapping. For ELF files, you can easily coordinate with the off?

 set field by looking at the Offset field in the ELF program

 headers (readelf -l).

 There are additional helpful pseudo-paths:

 [stack]

 The initial process's (also known as the main thread's)

 stack.

 [stack:<tid>] (from Linux 3.4 to 4.4)

 A thread's stack (where the <tid> is a thread ID). It

 corresponds to the /proc/[pid]/task/[tid]/ path. This

 field was removed in Linux 4.5, since providing this in?

 formation for a process with large numbers of threads is

 expensive.

 [vdso] The virtual dynamically linked shared object. See

 vdso(7).

 [heap] The process's heap.

 If the pathname field is blank, this is an anonymous mapping as

 obtained via mmap(2). There is no easy way to coordinate this

 back to a process's source, short of running it through gdb(1),

 strace(1), or similar.

 pathname is shown unescaped except for newline characters, which

 are replaced with an octal escape sequence. As a result, it is

 not possible to determine whether the original pathname con?

 tained a newline character or the literal \012 character se?

 quence.

 If the mapping is file-backed and the file has been deleted, the

 string " (deleted)" is appended to the pathname. Note that this

 is ambiguous too.

 Under Linux 2.0, there is no field giving pathname.

 /proc/[pid]/mem

 This file can be used to access the pages of a process's memory Page 21/106

 through open(2), read(2), and lseek(2).

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/mountinfo (since Linux 2.6.26)

 This file contains information about mount points in the

 process's mount namespace (see mount_namespaces(7)). It sup?

 plies various information (e.g., propagation state, root of

 mount for bind mounts, identifier for each mount and its parent)

 that is missing from the (older) /proc/[pid]/mounts file, and

 fixes various other problems with that file (e.g., nonextensi?

 bility, failure to distinguish per-mount versus per-superblock

 options).

 The file contains lines of the form:

 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue

 (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)

 The numbers in parentheses are labels for the descriptions be?

 low:

 (1) mount ID: a unique ID for the mount (may be reused after

 umount(2)).

 (2) parent ID: the ID of the parent mount (or of self for the

 root of this mount namespace's mount tree).

 If a new mount is stacked on top of a previous existing

 mount (so that it hides the existing mount) at pathname P,

 then the parent of the new mount is the previous mount at

 that location. Thus, when looking at all the mounts

 stacked at a particular location, the top-most mount is the

 one that is not the parent of any other mount at the same

 location. (Note, however, that this top-most mount will be

 accessible only if the longest path subprefix of P that is

 a mount point is not itself hidden by a stacked mount.)

 If the parent mount point lies outside the process's root

 directory (see chroot(2)), the ID shown here won't have a

 corresponding record in mountinfo whose mount ID (field 1) Page 22/106

 matches this parent mount ID (because mount points that lie

 outside the process's root directory are not shown in

 mountinfo). As a special case of this point, the process's

 root mount point may have a parent mount (for the initramfs

 filesystem) that lies outside the process's root directory,

 and an entry for that mount point will not appear in

 mountinfo.

 (3) major:minor: the value of st_dev for files on this filesys?

 tem (see stat(2)).

 (4) root: the pathname of the directory in the filesystem which

 forms the root of this mount.

 (5) mount point: the pathname of the mount point relative to

 the process's root directory.

 (6) mount options: per-mount options (see mount(2)).

 (7) optional fields: zero or more fields of the form

 "tag[:value]"; see below.

 (8) separator: the end of the optional fields is marked by a

 single hyphen.

 (9) filesystem type: the filesystem type in the form

 "type[.subtype]".

 (10) mount source: filesystem-specific information or "none".

 (11) super options: per-superblock options (see mount(2)).

 Currently, the possible optional fields are shared, master,

 propagate_from, and unbindable. See mount_namespaces(7) for a

 description of these fields. Parsers should ignore all unrecog?

 nized optional fields.

 For more information on mount propagation see: Documenta?

 tion/filesystems/sharedsubtree.txt in the Linux kernel source

 tree.

 /proc/[pid]/mounts (since Linux 2.4.19)

 This file lists all the filesystems currently mounted in the

 process's mount namespace (see mount_namespaces(7)). The format

 of this file is documented in fstab(5). Page 23/106

 Since kernel version 2.6.15, this file is pollable: after open?

 ing the file for reading, a change in this file (i.e., a

 filesystem mount or unmount) causes select(2) to mark the file

 descriptor as having an exceptional condition, and poll(2) and

 epoll_wait(2) mark the file as having a priority event (POLL?

 PRI). (Before Linux 2.6.30, a change in this file was indicated

 by the file descriptor being marked as readable for select(2),

 and being marked as having an error condition for poll(2) and

 epoll_wait(2).)

 /proc/[pid]/mountstats (since Linux 2.6.17)

 This file exports information (statistics, configuration infor?

 mation) about the mount points in the process's mount namespace

 (see mount_namespaces(7)). Lines in this file have the form:

 device /dev/sda7 mounted on /home with fstype ext3 [stats]

 (1) (2) (3) (4)

 The fields in each line are:

 (1) The name of the mounted device (or "nodevice" if there is

 no corresponding device).

 (2) The mount point within the filesystem tree.

 (3) The filesystem type.

 (4) Optional statistics and configuration information. Cur?

 rently (as at Linux 2.6.26), only NFS filesystems export

 information via this field.

 This file is readable only by the owner of the process.

 /proc/[pid]/net (since Linux 2.6.25)

 See the description of /proc/net.

 /proc/[pid]/ns/ (since Linux 3.0)

 This is a subdirectory containing one entry for each namespace

 that supports being manipulated by setns(2). For more informa?

 tion, see namespaces(7).

 /proc/[pid]/numa_maps (since Linux 2.6.14)

 See numa(7).

 /proc/[pid]/oom_adj (since Linux 2.6.11) Page 24/106

 This file can be used to adjust the score used to select which

 process should be killed in an out-of-memory (OOM) situation.

 The kernel uses this value for a bit-shift operation of the

 process's oom_score value: valid values are in the range -16 to

 +15, plus the special value -17, which disables OOM-killing al?

 together for this process. A positive score increases the like?

 lihood of this process being killed by the OOM-killer; a nega?

 tive score decreases the likelihood.

 The default value for this file is 0; a new process inherits its

 parent's oom_adj setting. A process must be privileged

 (CAP_SYS_RESOURCE) to update this file.

 Since Linux 2.6.36, use of this file is deprecated in favor of

 /proc/[pid]/oom_score_adj.

 /proc/[pid]/oom_score (since Linux 2.6.11)

 This file displays the current score that the kernel gives to

 this process for the purpose of selecting a process for the OOM-

 killer. A higher score means that the process is more likely to

 be selected by the OOM-killer. The basis for this score is the

 amount of memory used by the process, with increases (+) or de?

 creases (-) for factors including:

 * whether the process is privileged (-).

 Before kernel 2.6.36 the following factors were also used in the

 calculation of oom_score:

 * whether the process creates a lot of children using fork(2)

 (+);

 * whether the process has been running a long time, or has used

 a lot of CPU time (-);

 * whether the process has a low nice value (i.e., > 0) (+); and

 * whether the process is making direct hardware access (-).

 The oom_score also reflects the adjustment specified by the

 oom_score_adj or oom_adj setting for the process.

 /proc/[pid]/oom_score_adj (since Linux 2.6.36)

 This file can be used to adjust the badness heuristic used to Page 25/106

 select which process gets killed in out-of-memory conditions.

 The badness heuristic assigns a value to each candidate task

 ranging from 0 (never kill) to 1000 (always kill) to determine

 which process is targeted. The units are roughly a proportion

 along that range of allowed memory the process may allocate

 from, based on an estimation of its current memory and swap use.

 For example, if a task is using all allowed memory, its badness

 score will be 1000. If it is using half of its allowed memory,

 its score will be 500.

 There is an additional factor included in the badness score:

 root processes are given 3% extra memory over other tasks.

 The amount of "allowed" memory depends on the context in which

 the OOM-killer was called. If it is due to the memory assigned

 to the allocating task's cpuset being exhausted, the allowed

 memory represents the set of mems assigned to that cpuset (see

 cpuset(7)). If it is due to a mempolicy's node(s) being ex?

 hausted, the allowed memory represents the set of mempolicy

 nodes. If it is due to a memory limit (or swap limit) being

 reached, the allowed memory is that configured limit. Finally,

 if it is due to the entire system being out of memory, the al?

 lowed memory represents all allocatable resources.

 The value of oom_score_adj is added to the badness score before

 it is used to determine which task to kill. Acceptable values

 range from -1000 (OOM_SCORE_ADJ_MIN) to +1000

 (OOM_SCORE_ADJ_MAX). This allows user space to control the

 preference for OOM-killing, ranging from always preferring a

 certain task or completely disabling it from OOM killing. The

 lowest possible value, -1000, is equivalent to disabling OOM-

 killing entirely for that task, since it will always report a

 badness score of 0.

 Consequently, it is very simple for user space to define the

 amount of memory to consider for each task. Setting an

 oom_score_adj value of +500, for example, is roughly equivalent Page 26/106

 to allowing the remainder of tasks sharing the same system,

 cpuset, mempolicy, or memory controller resources to use at

 least 50% more memory. A value of -500, on the other hand,

 would be roughly equivalent to discounting 50% of the task's al?

 lowed memory from being considered as scoring against the task.

 For backward compatibility with previous kernels,

 /proc/[pid]/oom_adj can still be used to tune the badness score.

 Its value is scaled linearly with oom_score_adj.

 Writing to /proc/[pid]/oom_score_adj or /proc/[pid]/oom_adj will

 change the other with its scaled value.

 The choom(1) program provides a command-line interface for ad?

 justing the oom_score_adj value of a running process or a newly

 executed command.

 /proc/[pid]/pagemap (since Linux 2.6.25)

 This file shows the mapping of each of the process's virtual

 pages into physical page frames or swap area. It contains one

 64-bit value for each virtual page, with the bits set as fol?

 lows:

 63 If set, the page is present in RAM.

 62 If set, the page is in swap space

 61 (since Linux 3.5)

 The page is a file-mapped page or a shared anonymous

 page.

 60?57 (since Linux 3.11)

 Zero

 56 (since Linux 4.2)

 The page is exclusively mapped.

 55 (since Linux 3.11)

 PTE is soft-dirty (see the kernel source file Documenta?

 tion/admin-guide/mm/soft-dirty.rst).

 54?0 If the page is present in RAM (bit 63), then these bits

 provide the page frame number, which can be used to index

 /proc/kpageflags and /proc/kpagecount. If the page is Page 27/106

 present in swap (bit 62), then bits 4?0 give the swap

 type, and bits 54?5 encode the swap offset.

 Before Linux 3.11, bits 60?55 were used to encode the base-2 log

 of the page size.

 To employ /proc/[pid]/pagemap efficiently, use /proc/[pid]/maps

 to determine which areas of memory are actually mapped and seek

 to skip over unmapped regions.

 The /proc/[pid]/pagemap file is present only if the CON?

 FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/personality (since Linux 2.6.28)

 This read-only file exposes the process's execution domain, as

 set by personality(2). The value is displayed in hexadecimal

 notation.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/root

 UNIX and Linux support the idea of a per-process root of the

 filesystem, set by the chroot(2) system call. This file is a

 symbolic link that points to the process's root directory, and

 behaves in the same way as exe, and fd/*.

 Note however that this file is not merely a symbolic link. It

 provides the same view of the filesystem (including namespaces

 and the set of per-process mounts) as the process itself. An

 example illustrates this point. In one terminal, we start a

 shell in new user and mount namespaces, and in that shell we

 create some new mount points:

 $ PS1='sh1# ' unshare -Urnm

 sh1# mount -t tmpfs tmpfs /etc # Mount empty tmpfs at /etc

 sh1# mount --bind /usr /dev # Mount /usr at /dev

 sh1# echo $$

 27123 Page 28/106

 In a second terminal window, in the initial mount namespace, we

 look at the contents of the corresponding mounts in the initial

 and new namespaces:

 $ PS1='sh2# ' sudo sh

 sh2# ls /etc | wc -l # In initial NS

 309

 sh2# ls /proc/27123/root/etc | wc -l # /etc in other NS

 0 # The empty tmpfs dir

 sh2# ls /dev | wc -l # In initial NS

 205

 sh2# ls /proc/27123/root/dev | wc -l # /dev in other NS

 11 # Actually bind

 # mounted to /usr

 sh2# ls /usr | wc -l # /usr in initial NS

 11

 In a multithreaded process, the contents of the /proc/[pid]/root

 symbolic link are not available if the main thread has already

 terminated (typically by calling pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic

 link is governed by a ptrace access mode PTRACE_MODE_READ_FS?

 CREDS check; see ptrace(2).

 /proc/[pid]/seccomp (Linux 2.6.12 to 2.6.22)

 This file can be used to read and change the process's secure

 computing (seccomp) mode setting. It contains the value 0 if

 the process is not in seccomp mode, and 1 if the process is in

 strict seccomp mode (see seccomp(2)). Writing 1 to this file

 places the process irreversibly in strict seccomp mode. (Fur?

 ther attempts to write to the file fail with the EPERM error.)

 In Linux 2.6.23, this file went away, to be replaced by the

 prctl(2) PR_GET_SECCOMP and PR_SET_SECCOMP operations (and later

 by seccomp(2) and the Seccomp field in /proc/[pid]/status).

 /proc/[pid]/setgroups (since Linux 3.19)

 See user_namespaces(7). Page 29/106

 /proc/[pid]/smaps (since Linux 2.6.14)

 This file shows memory consumption for each of the process's

 mappings. (The pmap(1) command displays similar information, in

 a form that may be easier for parsing.) For each mapping there

 is a series of lines such as the following:

 00400000-0048a000 r-xp 00000000 fd:03 960637 /bin/bash

 Size: 552 kB

 Rss: 460 kB

 Pss: 100 kB

 Shared_Clean: 452 kB

 Shared_Dirty: 0 kB

 Private_Clean: 8 kB

 Private_Dirty: 0 kB

 Referenced: 460 kB

 Anonymous: 0 kB

 AnonHugePages: 0 kB

 ShmemHugePages: 0 kB

 ShmemPmdMapped: 0 kB

 Swap: 0 kB

 KernelPageSize: 4 kB

 MMUPageSize: 4 kB

 KernelPageSize: 4 kB

 MMUPageSize: 4 kB

 Locked: 0 kB

 ProtectionKey: 0

 VmFlags: rd ex mr mw me dw

 The first of these lines shows the same information as is dis?

 played for the mapping in /proc/[pid]/maps. The following lines

 show the size of the mapping, the amount of the mapping that is

 currently resident in RAM ("Rss"), the process's proportional

 share of this mapping ("Pss"), the number of clean and dirty

 shared pages in the mapping, and the number of clean and dirty

 private pages in the mapping. "Referenced" indicates the amount Page 30/106

 of memory currently marked as referenced or accessed. "Anony?

 mous" shows the amount of memory that does not belong to any

 file. "Swap" shows how much would-be-anonymous memory is also

 used, but out on swap.

 The "KernelPageSize" line (available since Linux 2.6.29) is the

 page size used by the kernel to back the virtual memory area.

 This matches the size used by the MMU in the majority of cases.

 However, one counter-example occurs on PPC64 kernels whereby a

 kernel using 64 kB as a base page size may still use 4 kB pages

 for the MMU on older processors. To distinguish the two at?

 tributes, the "MMUPageSize" line (also available since Linux

 2.6.29) reports the page size used by the MMU.

 The "Locked" indicates whether the mapping is locked in memory

 or not.

 The "ProtectionKey" line (available since Linux 4.9, on x86

 only) contains the memory protection key (see pkeys(7)) associ?

 ated with the virtual memory area. This entry is present only

 if the kernel was built with the CONFIG_X86_INTEL_MEMORY_PROTEC?

 TION_KEYS configuration option (since Linux 4.6).

 The "VmFlags" line (available since Linux 3.8) represents the

 kernel flags associated with the virtual memory area, encoded

 using the following two-letter codes:

 rd - readable

 wr - writable

 ex - executable

 sh - shared

 mr - may read

 mw - may write

 me - may execute

 ms - may share

 gd - stack segment grows down

 pf - pure PFN range

 dw - disabled write to the mapped file Page 31/106

 lo - pages are locked in memory

 io - memory mapped I/O area

 sr - sequential read advise provided

 rr - random read advise provided

 dc - do not copy area on fork

 de - do not expand area on remapping

 ac - area is accountable

 nr - swap space is not reserved for the area

 ht - area uses huge tlb pages

 sf - perform synchronous page faults (since Linux 4.15)

 nl - non-linear mapping (removed in Linux 4.0)

 ar - architecture specific flag

 wf - wipe on fork (since Linux 4.14)

 dd - do not include area into core dump

 sd - soft-dirty flag (since Linux 3.13)

 mm - mixed map area

 hg - huge page advise flag

 nh - no-huge page advise flag

 mg - mergeable advise flag

 um - userfaultfd missing pages tracking (since Linux 4.3)

 uw - userfaultfd wprotect pages tracking (since Linux 4.3)

 The /proc/[pid]/smaps file is present only if the CON?

 FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

 /proc/[pid]/stack (since Linux 2.6.29)

 This file provides a symbolic trace of the function calls in

 this process's kernel stack. This file is provided only if the

 kernel was built with the CONFIG_STACKTRACE configuration op?

 tion.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/stat

 Status information about the process. This is used by ps(1).

 It is defined in the kernel source file fs/proc/array.c. Page 32/106

 The fields, in order, with their proper scanf(3) format speci?

 fiers, are listed below. Whether or not certain of these fields

 display valid information is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS | PTRACE_MODE_NOAUDIT check (refer to

 ptrace(2)). If the check denies access, then the field value is

 displayed as 0. The affected fields are indicated with the

 marking [PT].

 (1) pid %d

 The process ID.

 (2) comm %s

 The filename of the executable, in parentheses. Strings

 longer than TASK_COMM_LEN (16) characters (including the

 terminating null byte) are silently truncated. This is

 visible whether or not the executable is swapped out.

 (3) state %c

 One of the following characters, indicating process

 state:

 R Running

 S Sleeping in an interruptible wait

 D Waiting in uninterruptible disk sleep

 Z Zombie

 T Stopped (on a signal) or (before Linux 2.6.33) trace

 stopped

 t Tracing stop (Linux 2.6.33 onward)

 W Paging (only before Linux 2.6.0)

 X Dead (from Linux 2.6.0 onward)

 x Dead (Linux 2.6.33 to 3.13 only)

 K Wakekill (Linux 2.6.33 to 3.13 only)

 W Waking (Linux 2.6.33 to 3.13 only)

 P Parked (Linux 3.9 to 3.13 only)

 (4) ppid %d

 The PID of the parent of this process.

 (5) pgrp %d Page 33/106

 The process group ID of the process.

 (6) session %d

 The session ID of the process.

 (7) tty_nr %d

 The controlling terminal of the process. (The minor de?

 vice number is contained in the combination of bits 31 to

 20 and 7 to 0; the major device number is in bits 15 to

 8.)

 (8) tpgid %d

 The ID of the foreground process group of the controlling

 terminal of the process.

 (9) flags %u

 The kernel flags word of the process. For bit meanings,

 see the PF_* defines in the Linux kernel source file in?

 clude/linux/sched.h. Details depend on the kernel ver?

 sion.

 The format for this field was %lu before Linux 2.6.

 (10) minflt %lu

 The number of minor faults the process has made which

 have not required loading a memory page from disk.

 (11) cminflt %lu

 The number of minor faults that the process's waited-for

 children have made.

 (12) majflt %lu

 The number of major faults the process has made which

 have required loading a memory page from disk.

 (13) cmajflt %lu

 The number of major faults that the process's waited-for

 children have made.

 (14) utime %lu

 Amount of time that this process has been scheduled in

 user mode, measured in clock ticks (divide by

 sysconf(_SC_CLK_TCK)). This includes guest time, Page 34/106

 guest_time (time spent running a virtual CPU, see below),

 so that applications that are not aware of the guest time

 field do not lose that time from their calculations.

 (15) stime %lu

 Amount of time that this process has been scheduled in

 kernel mode, measured in clock ticks (divide by

 sysconf(_SC_CLK_TCK)).

 (16) cutime %ld

 Amount of time that this process's waited-for children

 have been scheduled in user mode, measured in clock ticks

 (divide by sysconf(_SC_CLK_TCK)). (See also times(2).)

 This includes guest time, cguest_time (time spent running

 a virtual CPU, see below).

 (17) cstime %ld

 Amount of time that this process's waited-for children

 have been scheduled in kernel mode, measured in clock

 ticks (divide by sysconf(_SC_CLK_TCK)).

 (18) priority %ld

 (Explanation for Linux 2.6) For processes running a real-

 time scheduling policy (policy below; see sched_setsched?

 uler(2)), this is the negated scheduling priority, minus

 one; that is, a number in the range -2 to -100, corre?

 sponding to real-time priorities 1 to 99. For processes

 running under a non-real-time scheduling policy, this is

 the raw nice value (setpriority(2)) as represented in the

 kernel. The kernel stores nice values as numbers in the

 range 0 (high) to 39 (low), corresponding to the user-

 visible nice range of -20 to 19.

 Before Linux 2.6, this was a scaled value based on the

 scheduler weighting given to this process.

 (19) nice %ld

 The nice value (see setpriority(2)), a value in the range

 19 (low priority) to -20 (high priority). Page 35/106

 (20) num_threads %ld

 Number of threads in this process (since Linux 2.6). Be?

 fore kernel 2.6, this field was hard coded to 0 as a

 placeholder for an earlier removed field.

 (21) itrealvalue %ld

 The time in jiffies before the next SIGALRM is sent to

 the process due to an interval timer. Since kernel

 2.6.17, this field is no longer maintained, and is hard

 coded as 0.

 (22) starttime %llu

 The time the process started after system boot. In ker?

 nels before Linux 2.6, this value was expressed in

 jiffies. Since Linux 2.6, the value is expressed in

 clock ticks (divide by sysconf(_SC_CLK_TCK)).

 The format for this field was %lu before Linux 2.6.

 (23) vsize %lu

 Virtual memory size in bytes.

 (24) rss %ld

 Resident Set Size: number of pages the process has in

 real memory. This is just the pages which count toward

 text, data, or stack space. This does not include pages

 which have not been demand-loaded in, or which are

 swapped out. This value is inaccurate; see

 /proc/[pid]/statm below.

 (25) rsslim %lu

 Current soft limit in bytes on the rss of the process;

 see the description of RLIMIT_RSS in getrlimit(2).

 (26) startcode %lu [PT]

 The address above which program text can run.

 (27) endcode %lu [PT]

 The address below which program text can run.

 (28) startstack %lu [PT]

 The address of the start (i.e., bottom) of the stack. Page 36/106

 (29) kstkesp %lu [PT]

 The current value of ESP (stack pointer), as found in the

 kernel stack page for the process.

 (30) kstkeip %lu [PT]

 The current EIP (instruction pointer).

 (31) signal %lu

 The bitmap of pending signals, displayed as a decimal

 number. Obsolete, because it does not provide informa?

 tion on real-time signals; use /proc/[pid]/status in?

 stead.

 (32) blocked %lu

 The bitmap of blocked signals, displayed as a decimal

 number. Obsolete, because it does not provide informa?

 tion on real-time signals; use /proc/[pid]/status in?

 stead.

 (33) sigignore %lu

 The bitmap of ignored signals, displayed as a decimal

 number. Obsolete, because it does not provide informa?

 tion on real-time signals; use /proc/[pid]/status in?

 stead.

 (34) sigcatch %lu

 The bitmap of caught signals, displayed as a decimal num?

 ber. Obsolete, because it does not provide information

 on real-time signals; use /proc/[pid]/status instead.

 (35) wchan %lu [PT]

 This is the "channel" in which the process is waiting.

 It is the address of a location in the kernel where the

 process is sleeping. The corresponding symbolic name can

 be found in /proc/[pid]/wchan.

 (36) nswap %lu

 Number of pages swapped (not maintained).

 (37) cnswap %lu

 Cumulative nswap for child processes (not maintained). Page 37/106

 (38) exit_signal %d (since Linux 2.1.22)

 Signal to be sent to parent when we die.

 (39) processor %d (since Linux 2.2.8)

 CPU number last executed on.

 (40) rt_priority %u (since Linux 2.5.19)

 Real-time scheduling priority, a number in the range 1 to

 99 for processes scheduled under a real-time policy, or

 0, for non-real-time processes (see sched_setsched?

 uler(2)).

 (41) policy %u (since Linux 2.5.19)

 Scheduling policy (see sched_setscheduler(2)). Decode

 using the SCHED_* constants in linux/sched.h.

 The format for this field was %lu before Linux 2.6.22.

 (42) delayacct_blkio_ticks %llu (since Linux 2.6.18)

 Aggregated block I/O delays, measured in clock ticks

 (centiseconds).

 (43) guest_time %lu (since Linux 2.6.24)

 Guest time of the process (time spent running a virtual

 CPU for a guest operating system), measured in clock

 ticks (divide by sysconf(_SC_CLK_TCK)).

 (44) cguest_time %ld (since Linux 2.6.24)

 Guest time of the process's children, measured in clock

 ticks (divide by sysconf(_SC_CLK_TCK)).

 (45) start_data %lu (since Linux 3.3) [PT]

 Address above which program initialized and uninitialized

 (BSS) data are placed.

 (46) end_data %lu (since Linux 3.3) [PT]

 Address below which program initialized and uninitialized

 (BSS) data are placed.

 (47) start_brk %lu (since Linux 3.3) [PT]

 Address above which program heap can be expanded with

 brk(2).

 (48) arg_start %lu (since Linux 3.5) [PT] Page 38/106

 Address above which program command-line arguments (argv)

 are placed.

 (49) arg_end %lu (since Linux 3.5) [PT]

 Address below program command-line arguments (argv) are

 placed.

 (50) env_start %lu (since Linux 3.5) [PT]

 Address above which program environment is placed.

 (51) env_end %lu (since Linux 3.5) [PT]

 Address below which program environment is placed.

 (52) exit_code %d (since Linux 3.5) [PT]

 The thread's exit status in the form reported by wait?

 pid(2).

 /proc/[pid]/statm

 Provides information about memory usage, measured in pages. The

 columns are:

 size (1) total program size

 (same as VmSize in /proc/[pid]/status)

 resident (2) resident set size

 (inaccurate; same as VmRSS in /proc/[pid]/status)

 shared (3) number of resident shared pages

 (i.e., backed by a file)

 (inaccurate; same as RssFile+RssShmem in

 /proc/[pid]/status)

 text (4) text (code)

 lib (5) library (unused since Linux 2.6; always 0)

 data (6) data + stack

 dt (7) dirty pages (unused since Linux 2.6; always 0)

 Some of these values are inaccurate because of a kernel-internal

 scalability optimization. If accurate values are required, use

 /proc/[pid]/smaps or /proc/[pid]/smaps_rollup instead, which are

 much slower but provide accurate, detailed information.

 /proc/[pid]/status

 Provides much of the information in /proc/[pid]/stat and Page 39/106

 /proc/[pid]/statm in a format that's easier for humans to parse.

 Here's an example:

 $ cat /proc/$$/status

 Name: bash

 Umask: 0022

 State: S (sleeping)

 Tgid: 17248

 Ngid: 0

 Pid: 17248

 PPid: 17200

 TracerPid: 0

 Uid: 1000 1000 1000 1000

 Gid: 100 100 100 100

 FDSize: 256

 Groups: 16 33 100

 NStgid: 17248

 NSpid: 17248

 NSpgid: 17248

 NSsid: 17200

 VmPeak: 131168 kB

 VmSize: 131168 kB

 VmLck: 0 kB

 VmPin: 0 kB

 VmHWM: 13484 kB

 VmRSS: 13484 kB

 RssAnon: 10264 kB

 RssFile: 3220 kB

 RssShmem: 0 kB

 VmData: 10332 kB

 VmStk: 136 kB

 VmExe: 992 kB

 VmLib: 2104 kB

 VmPTE: 76 kB Page 40/106

 VmPMD: 12 kB

 VmSwap: 0 kB

 HugetlbPages: 0 kB # 4.4

 CoreDumping: 0 # 4.15

 Threads: 1

 SigQ: 0/3067

 SigPnd: 0000000000000000

 ShdPnd: 0000000000000000

 SigBlk: 0000000000010000

 SigIgn: 0000000000384004

 SigCgt: 000000004b813efb

 CapInh: 0000000000000000

 CapPrm: 0000000000000000

 CapEff: 0000000000000000

 CapBnd: ffffffffffffffff

 CapAmb: 0000000000000000

 NoNewPrivs: 0

 Seccomp: 0

 Speculation_Store_Bypass: vulnerable

 Cpus_allowed: 00000001

 Cpus_allowed_list: 0

 Mems_allowed: 1

 Mems_allowed_list: 0

 voluntary_ctxt_switches: 150

 nonvoluntary_ctxt_switches: 545

 The fields are as follows:

 Name Command run by this process. Strings longer than

 TASK_COMM_LEN (16) characters (including the terminating

 null byte) are silently truncated.

 Umask Process umask, expressed in octal with a leading zero;

 see umask(2). (Since Linux 4.7.)

 State Current state of the process. One of "R (running)", "S

 (sleeping)", "D (disk sleep)", "T (stopped)", "t (tracing Page 41/106

 stop)", "Z (zombie)", or "X (dead)".

 Tgid Thread group ID (i.e., Process ID).

 Ngid NUMA group ID (0 if none; since Linux 3.13).

 Pid Thread ID (see gettid(2)).

 PPid PID of parent process.

 TracerPid

 PID of process tracing this process (0 if not being

 traced).

 Uid, Gid

 Real, effective, saved set, and filesystem UIDs (GIDs).

 FDSize Number of file descriptor slots currently allocated.

 Groups Supplementary group list.

 NStgid Thread group ID (i.e., PID) in each of the PID namespaces

 of which [pid] is a member. The leftmost entry shows the

 value with respect to the PID namespace of the process

 that mounted this procfs (or the root namespace if

 mounted by the kernel), followed by the value in succes?

 sively nested inner namespaces. (Since Linux 4.1.)

 NSpid Thread ID in each of the PID namespaces of which [pid] is

 a member. The fields are ordered as for NStgid. (Since

 Linux 4.1.)

 NSpgid Process group ID in each of the PID namespaces of which

 [pid] is a member. The fields are ordered as for NStgid.

 (Since Linux 4.1.)

 NSsid descendant namespace session ID hierarchy Session ID in

 each of the PID namespaces of which [pid] is a member.

 The fields are ordered as for NStgid. (Since Linux 4.1.)

 VmPeak Peak virtual memory size.

 VmSize Virtual memory size.

 VmLck Locked memory size (see mlock(2)).

 VmPin Pinned memory size (since Linux 3.2). These are pages

 that can't be moved because something needs to directly

 access physical memory. Page 42/106

 VmHWM Peak resident set size ("high water mark"). This value

 is inaccurate; see /proc/[pid]/statm above.

 VmRSS Resident set size. Note that the value here is the sum

 of RssAnon, RssFile, and RssShmem. This value is inaccu?

 rate; see /proc/[pid]/statm above.

 RssAnon

 Size of resident anonymous memory. (since Linux 4.5).

 This value is inaccurate; see /proc/[pid]/statm above.

 RssFile

 Size of resident file mappings. (since Linux 4.5). This

 value is inaccurate; see /proc/[pid]/statm above.

 RssShmem

 Size of resident shared memory (includes System V shared

 memory, mappings from tmpfs(5), and shared anonymous map?

 pings). (since Linux 4.5).

 VmData, VmStk, VmExe

 Size of data, stack, and text segments. This value is

 inaccurate; see /proc/[pid]/statm above.

 VmLib Shared library code size.

 VmPTE Page table entries size (since Linux 2.6.10).

 VmPMD Size of second-level page tables (added in Linux 4.0; re?

 moved in Linux 4.15).

 VmSwap Swapped-out virtual memory size by anonymous private

 pages; shmem swap usage is not included (since Linux

 2.6.34). This value is inaccurate; see /proc/[pid]/statm

 above.

 HugetlbPages

 Size of hugetlb memory portions (since Linux 4.4).

 CoreDumping

 Contains the value 1 if the process is currently dumping

 core, and 0 if it is not (since Linux 4.15). This infor?

 mation can be used by a monitoring process to avoid

 killing a process that is currently dumping core, which Page 43/106

 could result in a corrupted core dump file.

 Threads

 Number of threads in process containing this thread.

 SigQ This field contains two slash-separated numbers that re?

 late to queued signals for the real user ID of this

 process. The first of these is the number of currently

 queued signals for this real user ID, and the second is

 the resource limit on the number of queued signals for

 this process (see the description of RLIMIT_SIGPENDING in

 getrlimit(2)).

 SigPnd, ShdPnd

 Mask (expressed in hexadecimal) of signals pending for

 thread and for process as a whole (see pthreads(7) and

 signal(7)).

 SigBlk, SigIgn, SigCgt

 Masks (expressed in hexadecimal) indicating signals being

 blocked, ignored, and caught (see signal(7)).

 CapInh, CapPrm, CapEff

 Masks (expressed in hexadecimal) of capabilities enabled

 in inheritable, permitted, and effective sets (see capa?

 bilities(7)).

 CapBnd Capability bounding set, expressed in hexadecimal (since

 Linux 2.6.26, see capabilities(7)).

 CapAmb Ambient capability set, expressed in hexadecimal (since

 Linux 4.3, see capabilities(7)).

 NoNewPrivs

 Value of the no_new_privs bit (since Linux 4.10, see

 prctl(2)).

 Seccomp

 Seccomp mode of the process (since Linux 3.8, see sec?

 comp(2)). 0 means SECCOMP_MODE_DISABLED; 1 means SEC?

 COMP_MODE_STRICT; 2 means SECCOMP_MODE_FILTER. This

 field is provided only if the kernel was built with the Page 44/106

 CONFIG_SECCOMP kernel configuration option enabled.

 Speculation_Store_Bypass

 Speculation flaw mitigation state (since Linux 4.17, see

 prctl(2)).

 Cpus_allowed

 Hexadecimal mask of CPUs on which this process may run

 (since Linux 2.6.24, see cpuset(7)).

 Cpus_allowed_list

 Same as previous, but in "list format" (since Linux

 2.6.26, see cpuset(7)).

 Mems_allowed

 Mask of memory nodes allowed to this process (since Linux

 2.6.24, see cpuset(7)).

 Mems_allowed_list

 Same as previous, but in "list format" (since Linux

 2.6.26, see cpuset(7)).

 voluntary_ctxt_switches, nonvoluntary_ctxt_switches

 Number of voluntary and involuntary context switches

 (since Linux 2.6.23).

 /proc/[pid]/syscall (since Linux 2.6.27)

 This file exposes the system call number and argument registers

 for the system call currently being executed by the process,

 followed by the values of the stack pointer and program counter

 registers. The values of all six argument registers are ex?

 posed, although most system calls use fewer registers.

 If the process is blocked, but not in a system call, then the

 file displays -1 in place of the system call number, followed by

 just the values of the stack pointer and program counter. If

 process is not blocked, then the file contains just the string

 "running".

 This file is present only if the kernel was configured with CON?

 FIG_HAVE_ARCH_TRACEHOOK.

 Permission to access this file is governed by a ptrace access Page 45/106

 mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/task (since Linux 2.6.0)

 This is a directory that contains one subdirectory for each

 thread in the process. The name of each subdirectory is the nu?

 merical thread ID ([tid]) of the thread (see gettid(2)).

 Within each of these subdirectories, there is a set of files

 with the same names and contents as under the /proc/[pid] direc?

 tories. For attributes that are shared by all threads, the con?

 tents for each of the files under the task/[tid] subdirectories

 will be the same as in the corresponding file in the parent

 /proc/[pid] directory (e.g., in a multithreaded process, all of

 the task/[tid]/cwd files will have the same value as the

 /proc/[pid]/cwd file in the parent directory, since all of the

 threads in a process share a working directory). For attributes

 that are distinct for each thread, the corresponding files under

 task/[tid] may have different values (e.g., various fields in

 each of the task/[tid]/status files may be different for each

 thread), or they might not exist in /proc/[pid] at all.

 In a multithreaded process, the contents of the /proc/[pid]/task

 directory are not available if the main thread has already ter?

 minated (typically by calling pthread_exit(3)).

 /proc/[pid]/task/[tid]/children (since Linux 3.5)

 A space-separated list of child tasks of this task. Each child

 task is represented by its TID.

 This option is intended for use by the checkpoint-restore (CRIU)

 system, and reliably provides a list of children only if all of

 the child processes are stopped or frozen. It does not work

 properly if children of the target task exit while the file is

 being read! Exiting children may cause non-exiting children to

 be omitted from the list. This makes this interface even more

 unreliable than classic PID-based approaches if the inspected

 task and its children aren't frozen, and most code should proba?

 bly not use this interface. Page 46/106

 Until Linux 4.2, the presence of this file was governed by the

 CONFIG_CHECKPOINT_RESTORE kernel configuration option. Since

 Linux 4.2, it is governed by the CONFIG_PROC_CHILDREN option.

 /proc/[pid]/timers (since Linux 3.10)

 A list of the POSIX timers for this process. Each timer is

 listed with a line that starts with the string "ID:". For exam?

 ple:

 ID: 1

 signal: 60/00007fff86e452a8

 notify: signal/pid.2634

 ClockID: 0

 ID: 0

 signal: 60/00007fff86e452a8

 notify: signal/pid.2634

 ClockID: 1

 The lines shown for each timer have the following meanings:

 ID The ID for this timer. This is not the same as the timer

 ID returned by timer_create(2); rather, it is the same

 kernel-internal ID that is available via the si_timerid

 field of the siginfo_t structure (see sigaction(2)).

 signal This is the signal number that this timer uses to deliver

 notifications followed by a slash, and then the

 sigev_value value supplied to the signal handler. Valid

 only for timers that notify via a signal.

 notify The part before the slash specifies the mechanism that

 this timer uses to deliver notifications, and is one of

 "thread", "signal", or "none". Immediately following the

 slash is either the string "tid" for timers with

 SIGEV_THREAD_ID notification, or "pid" for timers that

 notify by other mechanisms. Following the "." is the PID

 of the process (or the kernel thread ID of the thread)

 that will be delivered a signal if the timer delivers no?

 tifications via a signal. Page 47/106

 ClockID

 This field identifies the clock that the timer uses for

 measuring time. For most clocks, this is a number that

 matches one of the user-space CLOCK_* constants exposed

 via <time.h>. CLOCK_PROCESS_CPUTIME_ID timers display

 with a value of -6 in this field.

 CLOCK_THREAD_CPUTIME_ID timers display with a value of -2

 in this field.

 This file is available only when the kernel was configured with

 CONFIG_CHECKPOINT_RESTORE.

 /proc/[pid]/timerslack_ns (since Linux 4.6)

 This file exposes the process's "current" timer slack value, ex?

 pressed in nanoseconds. The file is writable, allowing the

 process's timer slack value to be changed. Writing 0 to this

 file resets the "current" timer slack to the "default" timer

 slack value. For further details, see the discussion of

 PR_SET_TIMERSLACK in prctl(2).

 Initially, permission to access this file was governed by a

 ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check (see

 ptrace(2)). However, this was subsequently deemed too strict a

 requirement (and had the side effect that requiring a process to

 have the CAP_SYS_PTRACE capability would also allow it to view

 and change any process's memory). Therefore, since Linux 4.9,

 only the (weaker) CAP_SYS_NICE capability is required to access

 this file.

 /proc/[pid]/uid_map, /proc/[pid]/gid_map (since Linux 3.5)

 See user_namespaces(7).

 /proc/[pid]/wchan (since Linux 2.6.0)

 The symbolic name corresponding to the location in the kernel

 where the process is sleeping.

 Permission to access this file is governed by a ptrace access

 mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[tid] Page 48/106

 There is a numerical subdirectory for each running thread that

 is not a thread group leader (i.e., a thread whose thread ID is

 not the same as its process ID); the subdirectory is named by

 the thread ID. Each one of these subdirectories contains files

 and subdirectories exposing information about the thread with

 the thread ID tid. The contents of these directories are the

 same as the corresponding /proc/[pid]/task/[tid] directories.

 The /proc/[tid] subdirectories are not visible when iterating

 through /proc with getdents(2) (and thus are not visible when

 one uses ls(1) to view the contents of /proc). However, the

 pathnames of these directories are visible to (i.e., usable as

 arguments in) system calls that operate on pathnames.

 /proc/apm

 Advanced power management version and battery information when

 CONFIG_APM is defined at kernel compilation time.

 /proc/buddyinfo

 This file contains information which is used for diagnosing mem?

 ory fragmentation issues. Each line starts with the identifica?

 tion of the node and the name of the zone which together iden?

 tify a memory region. This is then followed by the count of

 available chunks of a certain order in which these zones are

 split. The size in bytes of a certain order is given by the

 formula:

 (2^order) * PAGE_SIZE

 The binary buddy allocator algorithm inside the kernel will

 split one chunk into two chunks of a smaller order (thus with

 half the size) or combine two contiguous chunks into one larger

 chunk of a higher order (thus with double the size) to satisfy

 allocation requests and to counter memory fragmentation. The

 order matches the column number, when starting to count at zero.

 For example on an x86-64 system:

 Node 0, zone DMA 1 1 1 0 2 1 1 0 1 1 3

 Node 0, zone DMA32 65 47 4 81 52 28 13 10 5 1 404 Page 49/106

 Node 0, zone Normal 216 55 189 101 84 38 37 27 5 3 587

 In this example, there is one node containing three zones and

 there are 11 different chunk sizes. If the page size is 4 kilo?

 bytes, then the first zone called DMA (on x86 the first 16

 megabyte of memory) has 1 chunk of 4 kilobytes (order 0) avail?

 able and has 3 chunks of 4 megabytes (order 10) available.

 If the memory is heavily fragmented, the counters for higher or?

 der chunks will be zero and allocation of large contiguous areas

 will fail.

 Further information about the zones can be found in /proc/zone?

 info.

 /proc/bus

 Contains subdirectories for installed busses.

 /proc/bus/pccard

 Subdirectory for PCMCIA devices when CONFIG_PCMCIA is set at

 kernel compilation time.

 /proc/bus/pccard/drivers

 /proc/bus/pci

 Contains various bus subdirectories and pseudo-files containing

 information about PCI busses, installed devices, and device

 drivers. Some of these files are not ASCII.

 /proc/bus/pci/devices

 Information about PCI devices. They may be accessed through

 lspci(8) and setpci(8).

 /proc/cgroups (since Linux 2.6.24)

 See cgroups(7).

 /proc/cmdline

 Arguments passed to the Linux kernel at boot time. Often done

 via a boot manager such as lilo(8) or grub(8).

 /proc/config.gz (since Linux 2.6)

 This file exposes the configuration options that were used to

 build the currently running kernel, in the same format as they

 would be shown in the .config file that resulted when configur? Page 50/106

 ing the kernel (using make xconfig, make config, or similar).

 The file contents are compressed; view or search them using

 zcat(1) and zgrep(1). As long as no changes have been made to

 the following file, the contents of /proc/config.gz are the same

 as those provided by:

 cat /lib/modules/$(uname -r)/build/.config

 /proc/config.gz is provided only if the kernel is configured

 with CONFIG_IKCONFIG_PROC.

 /proc/crypto

 A list of the ciphers provided by the kernel crypto API. For

 details, see the kernel Linux Kernel Crypto API documentation

 available under the kernel source directory Documenta?

 tion/crypto/ (or Documentation/DocBook before 4.10; the documen?

 tation can be built using a command such as make htmldocs in the

 root directory of the kernel source tree).

 /proc/cpuinfo

 This is a collection of CPU and system architecture dependent

 items, for each supported architecture a different list. Two

 common entries are processor which gives CPU number and bo?

 gomips; a system constant that is calculated during kernel ini?

 tialization. SMP machines have information for each CPU. The

 lscpu(1) command gathers its information from this file.

 /proc/devices

 Text listing of major numbers and device groups. This can be

 used by MAKEDEV scripts for consistency with the kernel.

 /proc/diskstats (since Linux 2.5.69)

 This file contains disk I/O statistics for each disk device.

 See the Linux kernel source file Documentation/iostats.txt for

 further information.

 /proc/dma

 This is a list of the registered ISA DMA (direct memory access)

 channels in use.

 /proc/driver Page 51/106

 Empty subdirectory.

 /proc/execdomains

 List of the execution domains (ABI personalities).

 /proc/fb

 Frame buffer information when CONFIG_FB is defined during kernel

 compilation.

 /proc/filesystems

 A text listing of the filesystems which are supported by the

 kernel, namely filesystems which were compiled into the kernel

 or whose kernel modules are currently loaded. (See also

 filesystems(5).) If a filesystem is marked with "nodev", this

 means that it does not require a block device to be mounted

 (e.g., virtual filesystem, network filesystem).

 Incidentally, this file may be used by mount(8) when no filesys?

 tem is specified and it didn't manage to determine the filesys?

 tem type. Then filesystems contained in this file are tried

 (excepted those that are marked with "nodev").

 /proc/fs

 Contains subdirectories that in turn contain files with informa?

 tion about (certain) mounted filesystems.

 /proc/ide

 This directory exists on systems with the IDE bus. There are

 directories for each IDE channel and attached device. Files in?

 clude:

 cache buffer size in KB

 capacity number of sectors

 driver driver version

 geometry physical and logical geometry

 identify in hexadecimal

 media media type

 model manufacturer's model number

 settings drive settings

 smart_thresholds IDE disk management thresholds (in hex) Page 52/106

 smart_values IDE disk management values (in hex)

 The hdparm(8) utility provides access to this information in a

 friendly format.

 /proc/interrupts

 This is used to record the number of interrupts per CPU per IO

 device. Since Linux 2.6.24, for the i386 and x86-64 architec?

 tures, at least, this also includes interrupts internal to the

 system (that is, not associated with a device as such), such as

 NMI (nonmaskable interrupt), LOC (local timer interrupt), and

 for SMP systems, TLB (TLB flush interrupt), RES (rescheduling

 interrupt), CAL (remote function call interrupt), and possibly

 others. Very easy to read formatting, done in ASCII.

 /proc/iomem

 I/O memory map in Linux 2.4.

 /proc/ioports

 This is a list of currently registered Input-Output port regions

 that are in use.

 /proc/kallsyms (since Linux 2.5.71)

 This holds the kernel exported symbol definitions used by the

 modules(X) tools to dynamically link and bind loadable modules.

 In Linux 2.5.47 and earlier, a similar file with slightly dif?

 ferent syntax was named ksyms.

 /proc/kcore

 This file represents the physical memory of the system and is

 stored in the ELF core file format. With this pseudo-file, and

 an unstripped kernel (/usr/src/linux/vmlinux) binary, GDB can be

 used to examine the current state of any kernel data structures.

 The total length of the file is the size of physical memory

 (RAM) plus 4 KiB.

 /proc/keys (since Linux 2.6.10)

 See keyrings(7).

 /proc/key-users (since Linux 2.6.10)

 See keyrings(7). Page 53/106

 /proc/kmsg

 This file can be used instead of the syslog(2) system call to

 read kernel messages. A process must have superuser privileges

 to read this file, and only one process should read this file.

 This file should not be read if a syslog process is running

 which uses the syslog(2) system call facility to log kernel mes?

 sages.

 Information in this file is retrieved with the dmesg(1) program.

 /proc/kpagecgroup (since Linux 4.3)

 This file contains a 64-bit inode number of the memory cgroup

 each page is charged to, indexed by page frame number (see the

 discussion of /proc/[pid]/pagemap).

 The /proc/kpagecgroup file is present only if the CONFIG_MEMCG

 kernel configuration option is enabled.

 /proc/kpagecount (since Linux 2.6.25)

 This file contains a 64-bit count of the number of times each

 physical page frame is mapped, indexed by page frame number (see

 the discussion of /proc/[pid]/pagemap).

 The /proc/kpagecount file is present only if the CON?

 FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

 /proc/kpageflags (since Linux 2.6.25)

 This file contains 64-bit masks corresponding to each physical

 page frame; it is indexed by page frame number (see the discus?

 sion of /proc/[pid]/pagemap). The bits are as follows:

 0 - KPF_LOCKED

 1 - KPF_ERROR

 2 - KPF_REFERENCED

 3 - KPF_UPTODATE

 4 - KPF_DIRTY

 5 - KPF_LRU

 6 - KPF_ACTIVE

 7 - KPF_SLAB

 8 - KPF_WRITEBACK Page 54/106

 9 - KPF_RECLAIM

 10 - KPF_BUDDY

 11 - KPF_MMAP (since Linux 2.6.31)

 12 - KPF_ANON (since Linux 2.6.31)

 13 - KPF_SWAPCACHE (since Linux 2.6.31)

 14 - KPF_SWAPBACKED (since Linux 2.6.31)

 15 - KPF_COMPOUND_HEAD (since Linux 2.6.31)

 16 - KPF_COMPOUND_TAIL (since Linux 2.6.31)

 17 - KPF_HUGE (since Linux 2.6.31)

 18 - KPF_UNEVICTABLE (since Linux 2.6.31)

 19 - KPF_HWPOISON (since Linux 2.6.31)

 20 - KPF_NOPAGE (since Linux 2.6.31)

 21 - KPF_KSM (since Linux 2.6.32)

 22 - KPF_THP (since Linux 3.4)

 23 - KPF_BALLOON (since Linux 3.18)

 24 - KPF_ZERO_PAGE (since Linux 4.0)

 25 - KPF_IDLE (since Linux 4.3)

 For further details on the meanings of these bits, see the ker?

 nel source file Documentation/admin-guide/mm/pagemap.rst. Be?

 fore kernel 2.6.29, KPF_WRITEBACK, KPF_RECLAIM, KPF_BUDDY, and

 KPF_LOCKED did not report correctly.

 The /proc/kpageflags file is present only if the CON?

 FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

 /proc/ksyms (Linux 1.1.23?2.5.47)

 See /proc/kallsyms.

 /proc/loadavg

 The first three fields in this file are load average figures

 giving the number of jobs in the run queue (state R) or waiting

 for disk I/O (state D) averaged over 1, 5, and 15 minutes. They

 are the same as the load average numbers given by uptime(1) and

 other programs. The fourth field consists of two numbers sepa?

 rated by a slash (/). The first of these is the number of cur?

 rently runnable kernel scheduling entities (processes, threads). Page 55/106

 The value after the slash is the number of kernel scheduling en?

 tities that currently exist on the system. The fifth field is

 the PID of the process that was most recently created on the

 system.

 /proc/locks

 This file shows current file locks (flock(2) and fcntl(2)) and

 leases (fcntl(2)).

 An example of the content shown in this file is the following:

 1: POSIX ADVISORY READ 5433 08:01:7864448 128 128

 2: FLOCK ADVISORY WRITE 2001 08:01:7864554 0 EOF

 3: FLOCK ADVISORY WRITE 1568 00:2f:32388 0 EOF

 4: POSIX ADVISORY WRITE 699 00:16:28457 0 EOF

 5: POSIX ADVISORY WRITE 764 00:16:21448 0 0

 6: POSIX ADVISORY READ 3548 08:01:7867240 1 1

 7: POSIX ADVISORY READ 3548 08:01:7865567 1826 2335

 8: OFDLCK ADVISORY WRITE -1 08:01:8713209 128 191

 The fields shown in each line are as follows:

 (1) The ordinal position of the lock in the list.

 (2) The lock type. Values that may appear here include:

 FLOCK This is a BSD file lock created using flock(2).

 OFDLCK This is an open file description (OFD) lock created

 using fcntl(2).

 POSIX This is a POSIX byte-range lock created using fc?

 ntl(2).

 (3) Among the strings that can appear here are the following:

 ADVISORY

 This is an advisory lock.

 MANDATORY

 This is a mandatory lock.

 (4) The type of lock. Values that can appear here are:

 READ This is a POSIX or OFD read lock, or a BSD shared

 lock.

 WRITE This is a POSIX or OFD write lock, or a BSD exclusive Page 56/106

 lock.

 (5) The PID of the process that owns the lock.

 Because OFD locks are not owned by a single process (since

 multiple processes may have file descriptors that refer to

 the same open file description), the value -1 is displayed

 in this field for OFD locks. (Before kernel 4.14, a bug

 meant that the PID of the process that initially acquired

 the lock was displayed instead of the value -1.)

 (6) Three colon-separated subfields that identify the major and

 minor device ID of the device containing the filesystem

 where the locked file resides, followed by the inode number

 of the locked file.

 (7) The byte offset of the first byte of the lock. For BSD

 locks, this value is always 0.

 (8) The byte offset of the last byte of the lock. EOF in this

 field means that the lock extends to the end of the file.

 For BSD locks, the value shown is always EOF.

 Since Linux 4.9, the list of locks shown in /proc/locks is fil?

 tered to show just the locks for the processes in the PID name?

 space (see pid_namespaces(7)) for which the /proc filesystem was

 mounted. (In the initial PID namespace, there is no filtering

 of the records shown in this file.)

 The lslocks(8) command provides a bit more information about

 each lock.

 /proc/malloc (only up to and including Linux 2.2)

 This file is present only if CONFIG_DEBUG_MALLOC was defined

 during compilation.

 /proc/meminfo

 This file reports statistics about memory usage on the system.

 It is used by free(1) to report the amount of free and used mem?

 ory (both physical and swap) on the system as well as the shared

 memory and buffers used by the kernel. Each line of the file

 consists of a parameter name, followed by a colon, the value of Page 57/106

 the parameter, and an option unit of measurement (e.g., "kB").

 The list below describes the parameter names and the format

 specifier required to read the field value. Except as noted be?

 low, all of the fields have been present since at least Linux

 2.6.0. Some fields are displayed only if the kernel was config?

 ured with various options; those dependencies are noted in the

 list.

 MemTotal %lu

 Total usable RAM (i.e., physical RAM minus a few reserved

 bits and the kernel binary code).

 MemFree %lu

 The sum of LowFree+HighFree.

 MemAvailable %lu (since Linux 3.14)

 An estimate of how much memory is available for starting

 new applications, without swapping.

 Buffers %lu

 Relatively temporary storage for raw disk blocks that

 shouldn't get tremendously large (20 MB or so).

 Cached %lu

 In-memory cache for files read from the disk (the page

 cache). Doesn't include SwapCached.

 SwapCached %lu

 Memory that once was swapped out, is swapped back in but

 still also is in the swap file. (If memory pressure is

 high, these pages don't need to be swapped out again be?

 cause they are already in the swap file. This saves

 I/O.)

 Active %lu

 Memory that has been used more recently and usually not

 reclaimed unless absolutely necessary.

 Inactive %lu

 Memory which has been less recently used. It is more el?

 igible to be reclaimed for other purposes. Page 58/106

 Active(anon) %lu (since Linux 2.6.28)

 [To be documented.]

 Inactive(anon) %lu (since Linux 2.6.28)

 [To be documented.]

 Active(file) %lu (since Linux 2.6.28)

 [To be documented.]

 Inactive(file) %lu (since Linux 2.6.28)

 [To be documented.]

 Unevictable %lu (since Linux 2.6.28)

 (From Linux 2.6.28 to 2.6.30, CONFIG_UNEVICTABLE_LRU was

 required.) [To be documented.]

 Mlocked %lu (since Linux 2.6.28)

 (From Linux 2.6.28 to 2.6.30, CONFIG_UNEVICTABLE_LRU was

 required.) [To be documented.]

 HighTotal %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)

 Total amount of highmem. Highmem is all memory above

 ~860 MB of physical memory. Highmem areas are for use by

 user-space programs, or for the page cache. The kernel

 must use tricks to access this memory, making it slower

 to access than lowmem.

 HighFree %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)

 Amount of free highmem.

 LowTotal %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)

 Total amount of lowmem. Lowmem is memory which can be

 used for everything that highmem can be used for, but it

 is also available for the kernel's use for its own data

 structures. Among many other things, it is where every?

 thing from Slab is allocated. Bad things happen when

 you're out of lowmem.

 LowFree %lu Page 59/106

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)

 Amount of free lowmem.

 MmapCopy %lu (since Linux 2.6.29)

 (CONFIG_MMU is required.) [To be documented.]

 SwapTotal %lu

 Total amount of swap space available.

 SwapFree %lu

 Amount of swap space that is currently unused.

 Dirty %lu

 Memory which is waiting to get written back to the disk.

 Writeback %lu

 Memory which is actively being written back to the disk.

 AnonPages %lu (since Linux 2.6.18)

 Non-file backed pages mapped into user-space page tables.

 Mapped %lu

 Files which have been mapped into memory (with mmap(2)),

 such as libraries.

 Shmem %lu (since Linux 2.6.32)

 Amount of memory consumed in tmpfs(5) filesystems.

 KReclaimable %lu (since Linux 4.20)

 Kernel allocations that the kernel will attempt to re?

 claim under memory pressure. Includes SReclaimable (be?

 low), and other direct allocations with a shrinker.

 Slab %lu

 In-kernel data structures cache. (See slabinfo(5).)

 SReclaimable %lu (since Linux 2.6.19)

 Part of Slab, that might be reclaimed, such as caches.

 SUnreclaim %lu (since Linux 2.6.19)

 Part of Slab, that cannot be reclaimed on memory pres?

 sure.

 KernelStack %lu (since Linux 2.6.32)

 Amount of memory allocated to kernel stacks.

 PageTables %lu (since Linux 2.6.18) Page 60/106

 Amount of memory dedicated to the lowest level of page

 tables.

 Quicklists %lu (since Linux 2.6.27)

 (CONFIG_QUICKLIST is required.) [To be documented.]

 NFS_Unstable %lu (since Linux 2.6.18)

 NFS pages sent to the server, but not yet committed to

 stable storage.

 Bounce %lu (since Linux 2.6.18)

 Memory used for block device "bounce buffers".

 WritebackTmp %lu (since Linux 2.6.26)

 Memory used by FUSE for temporary writeback buffers.

 CommitLimit %lu (since Linux 2.6.10)

 This is the total amount of memory currently available to

 be allocated on the system, expressed in kilobytes. This

 limit is adhered to only if strict overcommit accounting

 is enabled (mode 2 in /proc/sys/vm/overcommit_memory).

 The limit is calculated according to the formula de?

 scribed under /proc/sys/vm/overcommit_memory. For fur?

 ther details, see the kernel source file Documenta?

 tion/vm/overcommit-accounting.rst.

 Committed_AS %lu

 The amount of memory presently allocated on the system.

 The committed memory is a sum of all of the memory which

 has been allocated by processes, even if it has not been

 "used" by them as of yet. A process which allocates 1 GB

 of memory (using malloc(3) or similar), but touches only

 300 MB of that memory will show up as using only 300 MB

 of memory even if it has the address space allocated for

 the entire 1 GB.

 This 1 GB is memory which has been "committed" to by the

 VM and can be used at any time by the allocating applica?

 tion. With strict overcommit enabled on the system (mode

 2 in /proc/sys/vm/overcommit_memory), allocations which Page 61/106

 would exceed the CommitLimit will not be permitted. This

 is useful if one needs to guarantee that processes will

 not fail due to lack of memory once that memory has been

 successfully allocated.

 VmallocTotal %lu

 Total size of vmalloc memory area.

 VmallocUsed %lu

 Amount of vmalloc area which is used. Since Linux 4.4,

 this field is no longer calculated, and is hard coded as

 0. See /proc/vmallocinfo.

 VmallocChunk %lu

 Largest contiguous block of vmalloc area which is free.

 Since Linux 4.4, this field is no longer calculated and

 is hard coded as 0. See /proc/vmallocinfo.

 HardwareCorrupted %lu (since Linux 2.6.32)

 (CONFIG_MEMORY_FAILURE is required.) [To be documented.]

 LazyFree %lu (since Linux 4.12)

 Shows the amount of memory marked by madvise(2)

 MADV_FREE.

 AnonHugePages %lu (since Linux 2.6.38)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Non-file

 backed huge pages mapped into user-space page tables.

 ShmemHugePages %lu (since Linux 4.8)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Memory used

 by shared memory (shmem) and tmpfs(5) allocated with huge

 pages.

 ShmemPmdMapped %lu (since Linux 4.8)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Shared memory

 mapped into user space with huge pages.

 CmaTotal %lu (since Linux 3.1)

 Total CMA (Contiguous Memory Allocator) pages. (CON?

 FIG_CMA is required.)

 CmaFree %lu (since Linux 3.1) Page 62/106

 Free CMA (Contiguous Memory Allocator) pages. (CON?

 FIG_CMA is required.)

 HugePages_Total %lu

 (CONFIG_HUGETLB_PAGE is required.) The size of the pool

 of huge pages.

 HugePages_Free %lu

 (CONFIG_HUGETLB_PAGE is required.) The number of huge

 pages in the pool that are not yet allocated.

 HugePages_Rsvd %lu (since Linux 2.6.17)

 (CONFIG_HUGETLB_PAGE is required.) This is the number of

 huge pages for which a commitment to allocate from the

 pool has been made, but no allocation has yet been made.

 These reserved huge pages guarantee that an application

 will be able to allocate a huge page from the pool of

 huge pages at fault time.

 HugePages_Surp %lu (since Linux 2.6.24)

 (CONFIG_HUGETLB_PAGE is required.) This is the number of

 huge pages in the pool above the value in

 /proc/sys/vm/nr_hugepages. The maximum number of surplus

 huge pages is controlled by /proc/sys/vm/nr_overcom?

 mit_hugepages.

 Hugepagesize %lu

 (CONFIG_HUGETLB_PAGE is required.) The size of huge

 pages.

 DirectMap4k %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 4 kB

 pages. (x86.)

 DirectMap4M %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 4 MB

 pages. (x86 with CONFIG_X86_64 or CONFIG_X86_PAE en?

 abled.)

 DirectMap2M %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 2 MB Page 63/106

 pages. (x86 with neither CONFIG_X86_64 nor CON?

 FIG_X86_PAE enabled.)

 DirectMap1G %lu (since Linux 2.6.27)

 (x86 with CONFIG_X86_64 and CONFIG_X86_DIRECT_GBPAGES en?

 abled.)

 /proc/modules

 A text list of the modules that have been loaded by the system.

 See also lsmod(8).

 /proc/mounts

 Before kernel 2.4.19, this file was a list of all the filesys?

 tems currently mounted on the system. With the introduction of

 per-process mount namespaces in Linux 2.4.19 (see mount_name?

 spaces(7)), this file became a link to /proc/self/mounts, which

 lists the mount points of the process's own mount namespace.

 The format of this file is documented in fstab(5).

 /proc/mtrr

 Memory Type Range Registers. See the Linux kernel source file

 Documentation/x86/mtrr.txt (or Documentation/mtrr.txt before

 Linux 2.6.28) for details.

 /proc/net

 This directory contains various files and subdirectories con?

 taining information about the networking layer. The files con?

 tain ASCII structures and are, therefore, readable with cat(1).

 However, the standard netstat(8) suite provides much cleaner ac?

 cess to these files.

 With the advent of network namespaces, various information re?

 lating to the network stack is virtualized (see network_name?

 spaces(7)). Thus, since Linux 2.6.25, /proc/net is a symbolic

 link to the directory /proc/self/net, which contains the same

 files and directories as listed below. However, these files and

 directories now expose information for the network namespace of

 which the process is a member.

 /proc/net/arp Page 64/106

 This holds an ASCII readable dump of the kernel ARP table used

 for address resolutions. It will show both dynamically learned

 and preprogrammed ARP entries. The format is:

 IP address HW type Flags HW address Mask Device

 192.168.0.50 0x1 0x2 00:50:BF:25:68:F3 * eth0

 192.168.0.250 0x1 0xc 00:00:00:00:00:00 * eth0

 Here "IP address" is the IPv4 address of the machine and the "HW

 type" is the hardware type of the address from RFC 826. The

 flags are the internal flags of the ARP structure (as defined in

 /usr/include/linux/if_arp.h) and the "HW address" is the data

 link layer mapping for that IP address if it is known.

 /proc/net/dev

 The dev pseudo-file contains network device status information.

 This gives the number of received and sent packets, the number

 of errors and collisions and other basic statistics. These are

 used by the ifconfig(8) program to report device status. The

 format is:

 Inter-| Receive | Transmit

 face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier

compressed

 lo: 2776770 11307 0 0 0 0 0 0 2776770 11307 0 0 0 0 0 0

 eth0: 1215645 2751 0 0 0 0 0 0 1782404 4324 0 0 0 427 0 0

 ppp0: 1622270 5552 1 0 0 0 0 0 354130 5669 0 0 0 0 0 0

 tap0: 7714 81 0 0 0 0 0 0 7714 81 0 0 0 0 0 0

 /proc/net/dev_mcast

 Defined in /usr/src/linux/net/core/dev_mcast.c:

 indx interface_name dmi_u dmi_g dmi_address

 2 eth0 1 0 01005e000001

 3 eth1 1 0 01005e000001

 4 eth2 1 0 01005e000001

 /proc/net/igmp

 Internet Group Management Protocol. Defined in

 /usr/src/linux/net/core/igmp.c. Page 65/106

 /proc/net/rarp

 This file uses the same format as the arp file and contains the

 current reverse mapping database used to provide rarp(8) reverse

 address lookup services. If RARP is not configured into the

 kernel, this file will not be present.

 /proc/net/raw

 Holds a dump of the RAW socket table. Much of the information

 is not of use apart from debugging. The "sl" value is the ker?

 nel hash slot for the socket, the "local_address" is the local

 address and protocol number pair. "St" is the internal status

 of the socket. The "tx_queue" and "rx_queue" are the outgoing

 and incoming data queue in terms of kernel memory usage. The

 "tr", "tm->when", and "rexmits" fields are not used by RAW. The

 "uid" field holds the effective UID of the creator of the

 socket.

 /proc/net/snmp

 This file holds the ASCII data needed for the IP, ICMP, TCP, and

 UDP management information bases for an SNMP agent.

 /proc/net/tcp

 Holds a dump of the TCP socket table. Much of the information

 is not of use apart from debugging. The "sl" value is the ker?

 nel hash slot for the socket, the "local_address" is the local

 address and port number pair. The "rem_address" is the remote

 address and port number pair (if connected). "St" is the inter?

 nal status of the socket. The "tx_queue" and "rx_queue" are the

 outgoing and incoming data queue in terms of kernel memory us?

 age. The "tr", "tm->when", and "rexmits" fields hold internal

 information of the kernel socket state and are useful only for

 debugging. The "uid" field holds the effective UID of the cre?

 ator of the socket.

 /proc/net/udp

 Holds a dump of the UDP socket table. Much of the information

 is not of use apart from debugging. The "sl" value is the ker? Page 66/106

 nel hash slot for the socket, the "local_address" is the local

 address and port number pair. The "rem_address" is the remote

 address and port number pair (if connected). "St" is the inter?

 nal status of the socket. The "tx_queue" and "rx_queue" are the

 outgoing and incoming data queue in terms of kernel memory us?

 age. The "tr", "tm->when", and "rexmits" fields are not used by

 UDP. The "uid" field holds the effective UID of the creator of

 the socket. The format is:

 sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid

 1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0

 1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0

 1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

 /proc/net/unix

 Lists the UNIX domain sockets present within the system and

 their status. The format is:

 Num RefCount Protocol Flags Type St Inode Path

 0: 00000002 00000000 00000000 0001 03 42

 1: 00000001 00000000 00010000 0001 01 1948 /dev/printer

 The fields are as follows:

 Num: the kernel table slot number.

 RefCount: the number of users of the socket.

 Protocol: currently always 0.

 Flags: the internal kernel flags holding the status of the

 socket.

 Type: the socket type. For SOCK_STREAM sockets, this is

 0001; for SOCK_DGRAM sockets, it is 0002; and for

 SOCK_SEQPACKET sockets, it is 0005.

 St: the internal state of the socket.

 Inode: the inode number of the socket.

 Path: the bound pathname (if any) of the socket. Sockets in

 the abstract namespace are included in the list, and

 are shown with a Path that commences with the charac?

 ter '@'. Page 67/106

 /proc/net/netfilter/nfnetlink_queue

 This file contains information about netfilter user-space queue?

 ing, if used. Each line represents a queue. Queues that have

 not been subscribed to by user space are not shown.

 1 4207 0 2 65535 0 0 0 1

 (1) (2) (3)(4) (5) (6) (7) (8)

 The fields in each line are:

 (1) The ID of the queue. This matches what is specified in the

 --queue-num or --queue-balance options to the iptables(8)

 NFQUEUE target. See iptables-extensions(8) for more infor?

 mation.

 (2) The netlink port ID subscribed to the queue.

 (3) The number of packets currently queued and waiting to be

 processed by the application.

 (4) The copy mode of the queue. It is either 1 (metadata only)

 or 2 (also copy payload data to user space).

 (5) Copy range; that is, how many bytes of packet payload

 should be copied to user space at most.

 (6) queue dropped. Number of packets that had to be dropped by

 the kernel because too many packets are already waiting for

 user space to send back the mandatory accept/drop verdicts.

 (7) queue user dropped. Number of packets that were dropped

 within the netlink subsystem. Such drops usually happen

 when the corresponding socket buffer is full; that is, user

 space is not able to read messages fast enough.

 (8) sequence number. Every queued packet is associated with a

 (32-bit) monotonically increasing sequence number. This

 shows the ID of the most recent packet queued.

 The last number exists only for compatibility reasons and is al?

 ways 1.

 /proc/partitions

 Contains the major and minor numbers of each partition as well

 as the number of 1024-byte blocks and the partition name. Page 68/106

 /proc/pci

 This is a listing of all PCI devices found during kernel ini?

 tialization and their configuration.

 This file has been deprecated in favor of a new /proc interface

 for PCI (/proc/bus/pci). It became optional in Linux 2.2

 (available with CONFIG_PCI_OLD_PROC set at kernel compilation).

 It became once more nonoptionally enabled in Linux 2.4. Next,

 it was deprecated in Linux 2.6 (still available with CON?

 FIG_PCI_LEGACY_PROC set), and finally removed altogether since

 Linux 2.6.17.

 /proc/profile (since Linux 2.4)

 This file is present only if the kernel was booted with the pro?

 file=1 command-line option. It exposes kernel profiling infor?

 mation in a binary format for use by readprofile(1). Writing

 (e.g., an empty string) to this file resets the profiling coun?

 ters; on some architectures, writing a binary integer "profiling

 multiplier" of size sizeof(int) sets the profiling interrupt

 frequency.

 /proc/scsi

 A directory with the scsi mid-level pseudo-file and various SCSI

 low-level driver directories, which contain a file for each SCSI

 host in this system, all of which give the status of some part

 of the SCSI IO subsystem. These files contain ASCII structures

 and are, therefore, readable with cat(1).

 You can also write to some of the files to reconfigure the sub?

 system or switch certain features on or off.

 /proc/scsi/scsi

 This is a listing of all SCSI devices known to the kernel. The

 listing is similar to the one seen during bootup. scsi cur?

 rently supports only the add-single-device command which allows

 root to add a hotplugged device to the list of known devices.

 The command

 echo 'scsi add-single-device 1 0 5 0' > /proc/scsi/scsi Page 69/106

 will cause host scsi1 to scan on SCSI channel 0 for a device on

 ID 5 LUN 0. If there is already a device known on this address

 or the address is invalid, an error will be returned.

 /proc/scsi/[drivername]

 [drivername] can currently be NCR53c7xx, aha152x, aha1542,

 aha1740, aic7xxx, buslogic, eata_dma, eata_pio, fdomain, in2000,

 pas16, qlogic, scsi_debug, seagate, t128, u15-24f, ultrastore,

 or wd7000. These directories show up for all drivers that reg?

 istered at least one SCSI HBA. Every directory contains one

 file per registered host. Every host-file is named after the

 number the host was assigned during initialization.

 Reading these files will usually show driver and host configura?

 tion, statistics, and so on.

 Writing to these files allows different things on different

 hosts. For example, with the latency and nolatency commands,

 root can switch on and off command latency measurement code in

 the eata_dma driver. With the lockup and unlock commands, root

 can control bus lockups simulated by the scsi_debug driver.

 /proc/self

 This directory refers to the process accessing the /proc

 filesystem, and is identical to the /proc directory named by the

 process ID of the same process.

 /proc/slabinfo

 Information about kernel caches. See slabinfo(5) for details.

 /proc/stat

 kernel/system statistics. Varies with architecture. Common en?

 tries include:

 cpu 10132153 290696 3084719 46828483 16683 0 25195 0 175628 0

 cpu0 1393280 32966 572056 13343292 6130 0 17875 0 23933 0

 The amount of time, measured in units of USER_HZ

 (1/100ths of a second on most architectures, use

 sysconf(_SC_CLK_TCK) to obtain the right value), that the

 system ("cpu" line) or the specific CPU ("cpuN" line) Page 70/106

 spent in various states:

 user (1) Time spent in user mode.

 nice (2) Time spent in user mode with low priority

 (nice).

 system (3) Time spent in system mode.

 idle (4) Time spent in the idle task. This value

 should be USER_HZ times the second entry in the

 /proc/uptime pseudo-file.

 iowait (since Linux 2.5.41)

 (5) Time waiting for I/O to complete. This value

 is not reliable, for the following reasons:

 1. The CPU will not wait for I/O to complete;

 iowait is the time that a task is waiting for

 I/O to complete. When a CPU goes into idle

 state for outstanding task I/O, another task

 will be scheduled on this CPU.

 2. On a multi-core CPU, the task waiting for I/O

 to complete is not running on any CPU, so the

 iowait of each CPU is difficult to calculate.

 3. The value in this field may decrease in certain

 conditions.

 irq (since Linux 2.6.0)

 (6) Time servicing interrupts.

 softirq (since Linux 2.6.0)

 (7) Time servicing softirqs.

 steal (since Linux 2.6.11)

 (8) Stolen time, which is the time spent in other

 operating systems when running in a virtualized

 environment

 guest (since Linux 2.6.24)

 (9) Time spent running a virtual CPU for guest op?

 erating systems under the control of the Linux

 kernel. Page 71/106

 guest_nice (since Linux 2.6.33)

 (10) Time spent running a niced guest (virtual CPU

 for guest operating systems under the control of

 the Linux kernel).

 page 5741 1808

 The number of pages the system paged in and the number

 that were paged out (from disk).

 swap 1 0

 The number of swap pages that have been brought in and

 out.

 intr 1462898

 This line shows counts of interrupts serviced since boot

 time, for each of the possible system interrupts. The

 first column is the total of all interrupts serviced in?

 cluding unnumbered architecture specific interrupts; each

 subsequent column is the total for that particular num?

 bered interrupt. Unnumbered interrupts are not shown,

 only summed into the total.

 disk_io: (2,0):(31,30,5764,1,2) (3,0):...

 (major,disk_idx):(noinfo, read_io_ops, blks_read,

 write_io_ops, blks_written)

 (Linux 2.4 only)

 ctxt 115315

 The number of context switches that the system underwent.

 btime 769041601

 boot time, in seconds since the Epoch, 1970-01-01

 00:00:00 +0000 (UTC).

 processes 86031

 Number of forks since boot.

 procs_running 6

 Number of processes in runnable state. (Linux 2.5.45 on?

 ward.)

 procs_blocked 2 Page 72/106

 Number of processes blocked waiting for I/O to complete.

 (Linux 2.5.45 onward.)

 softirq 229245889 94 60001584 13619 5175704 2471304 28 51212741

 59130143 0 51240672

 This line shows the number of softirq for all CPUs. The

 first column is the total of all softirqs and each subse?

 quent column is the total for particular softirq. (Linux

 2.6.31 onward.)

 /proc/swaps

 Swap areas in use. See also swapon(8).

 /proc/sys

 This directory (present since 1.3.57) contains a number of files

 and subdirectories corresponding to kernel variables. These

 variables can be read and in some cases modified using the /proc

 filesystem, and the (deprecated) sysctl(2) system call.

 String values may be terminated by either '\0' or '\n'.

 Integer and long values may be written either in decimal or in

 hexadecimal notation (e.g., 0x3FFF). When writing multiple in?

 teger or long values, these may be separated by any of the fol?

 lowing whitespace characters: ' ', '\t', or '\n'. Using other

 separators leads to the error EINVAL.

 /proc/sys/abi (since Linux 2.4.10)

 This directory may contain files with application binary infor?

 mation. See the Linux kernel source file Documenta?

 tion/sysctl/abi.txt for more information.

 /proc/sys/debug

 This directory may be empty.

 /proc/sys/dev

 This directory contains device-specific information (e.g.,

 dev/cdrom/info). On some systems, it may be empty.

 /proc/sys/fs

 This directory contains the files and subdirectories for kernel

 variables related to filesystems. Page 73/106

 /proc/sys/fs/aio-max-nr and /proc/sys/fs/aio-nr (since Linux 2.6.4)

 aio-nr is the running total of the number of events specified by

 io_setup(2) calls for all currently active AIO contexts. If

 aio-nr reaches aio-max-nr, then io_setup(2) will fail with the

 error EAGAIN. Raising aio-max-nr does not result in the preal?

 location or resizing of any kernel data structures.

 /proc/sys/fs/binfmt_misc

 Documentation for files in this directory can be found in the

 Linux kernel source in the file Documentation/ad?

 min-guide/binfmt-misc.rst (or in Documentation/binfmt_misc.txt

 on older kernels).

 /proc/sys/fs/dentry-state (since Linux 2.2)

 This file contains information about the status of the directory

 cache (dcache). The file contains six numbers, nr_dentry,

 nr_unused, age_limit (age in seconds), want_pages (pages re?

 quested by system) and two dummy values.

 * nr_dentry is the number of allocated dentries (dcache en?

 tries). This field is unused in Linux 2.2.

 * nr_unused is the number of unused dentries.

 * age_limit is the age in seconds after which dcache entries can

 be reclaimed when memory is short.

 * want_pages is nonzero when the kernel has called

 shrink_dcache_pages() and the dcache isn't pruned yet.

 /proc/sys/fs/dir-notify-enable

 This file can be used to disable or enable the dnotify interface

 described in fcntl(2) on a system-wide basis. A value of 0 in

 this file disables the interface, and a value of 1 enables it.

 /proc/sys/fs/dquot-max

 This file shows the maximum number of cached disk quota entries.

 On some (2.4) systems, it is not present. If the number of free

 cached disk quota entries is very low and you have some awesome

 number of simultaneous system users, you might want to raise the

 limit. Page 74/106

 /proc/sys/fs/dquot-nr

 This file shows the number of allocated disk quota entries and

 the number of free disk quota entries.

 /proc/sys/fs/epoll (since Linux 2.6.28)

 This directory contains the file max_user_watches, which can be

 used to limit the amount of kernel memory consumed by the epoll

 interface. For further details, see epoll(7).

 /proc/sys/fs/file-max

 This file defines a system-wide limit on the number of open

 files for all processes. System calls that fail when encounter?

 ing this limit fail with the error ENFILE. (See also setr?

 limit(2), which can be used by a process to set the per-process

 limit, RLIMIT_NOFILE, on the number of files it may open.) If

 you get lots of error messages in the kernel log about running

 out of file handles (open file descriptions) (look for "VFS:

 file-max limit <number> reached"), try increasing this value:

 echo 100000 > /proc/sys/fs/file-max

 Privileged processes (CAP_SYS_ADMIN) can override the file-max

 limit.

 /proc/sys/fs/file-nr

 This (read-only) file contains three numbers: the number of al?

 located file handles (i.e., the number of open file descrip?

 tions; see open(2)); the number of free file handles; and the

 maximum number of file handles (i.e., the same value as

 /proc/sys/fs/file-max). If the number of allocated file handles

 is close to the maximum, you should consider increasing the max?

 imum. Before Linux 2.6, the kernel allocated file handles dy?

 namically, but it didn't free them again. Instead the free file

 handles were kept in a list for reallocation; the "free file

 handles" value indicates the size of that list. A large number

 of free file handles indicates that there was a past peak in the

 usage of open file handles. Since Linux 2.6, the kernel does

 deallocate freed file handles, and the "free file handles" value Page 75/106

 is always zero.

 /proc/sys/fs/inode-max (only present until Linux 2.2)

 This file contains the maximum number of in-memory inodes. This

 value should be 3?4 times larger than the value in file-max,

 since stdin, stdout and network sockets also need an inode to

 handle them. When you regularly run out of inodes, you need to

 increase this value.

 Starting with Linux 2.4, there is no longer a static limit on

 the number of inodes, and this file is removed.

 /proc/sys/fs/inode-nr

 This file contains the first two values from inode-state.

 /proc/sys/fs/inode-state

 This file contains seven numbers: nr_inodes, nr_free_inodes,

 preshrink, and four dummy values (always zero).

 nr_inodes is the number of inodes the system has allocated.

 nr_free_inodes represents the number of free inodes.

 preshrink is nonzero when the nr_inodes > inode-max and the sys?

 tem needs to prune the inode list instead of allocating more;

 since Linux 2.4, this field is a dummy value (always zero).

 /proc/sys/fs/inotify (since Linux 2.6.13)

 This directory contains files max_queued_events, max_user_in?

 stances, and max_user_watches, that can be used to limit the

 amount of kernel memory consumed by the inotify interface. For

 further details, see inotify(7).

 /proc/sys/fs/lease-break-time

 This file specifies the grace period that the kernel grants to a

 process holding a file lease (fcntl(2)) after it has sent a sig?

 nal to that process notifying it that another process is waiting

 to open the file. If the lease holder does not remove or down?

 grade the lease within this grace period, the kernel forcibly

 breaks the lease.

 /proc/sys/fs/leases-enable

 This file can be used to enable or disable file leases (fc? Page 76/106

 ntl(2)) on a system-wide basis. If this file contains the value

 0, leases are disabled. A nonzero value enables leases.

 /proc/sys/fs/mount-max (since Linux 4.9)

 The value in this file specifies the maximum number of mounts

 that may exist in a mount namespace. The default value in this

 file is 100,000.

 /proc/sys/fs/mqueue (since Linux 2.6.6)

 This directory contains files msg_max, msgsize_max, and

 queues_max, controlling the resources used by POSIX message

 queues. See mq_overview(7) for details.

 /proc/sys/fs/nr_open (since Linux 2.6.25)

 This file imposes a ceiling on the value to which the

 RLIMIT_NOFILE resource limit can be raised (see getrlimit(2)).

 This ceiling is enforced for both unprivileged and privileged

 process. The default value in this file is 1048576. (Before

 Linux 2.6.25, the ceiling for RLIMIT_NOFILE was hard-coded to

 the same value.)

 /proc/sys/fs/overflowgid and /proc/sys/fs/overflowuid

 These files allow you to change the value of the fixed UID and

 GID. The default is 65534. Some filesystems support only

 16-bit UIDs and GIDs, although in Linux UIDs and GIDs are 32

 bits. When one of these filesystems is mounted with writes en?

 abled, any UID or GID that would exceed 65535 is translated to

 the overflow value before being written to disk.

 /proc/sys/fs/pipe-max-size (since Linux 2.6.35)

 See pipe(7).

 /proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)

 See pipe(7).

 /proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)

 See pipe(7).

 /proc/sys/fs/protected_fifos (since Linux 4.19)

 The value in this file is/can be set to one of the following:

 0 Writing to FIFOs is unrestricted. Page 77/106

 1 Don't allow O_CREAT open(2) on FIFOs that the caller doesn't

 own in world-writable sticky directories, unless the FIFO is

 owned by the owner of the directory.

 2 As for the value 1, but the restriction also applies to

 group-writable sticky directories.

 The intent of the above protections is to avoid unintentional

 writes to an attacker-controlled FIFO when a program expected to

 create a regular file.

 /proc/sys/fs/protected_hardlinks (since Linux 3.6)

 When the value in this file is 0, no restrictions are placed on

 the creation of hard links (i.e., this is the historical behav?

 ior before Linux 3.6). When the value in this file is 1, a hard

 link can be created to a target file only if one of the follow?

 ing conditions is true:

 * The calling process has the CAP_FOWNER capability in its user

 namespace and the file UID has a mapping in the namespace.

 * The filesystem UID of the process creating the link matches

 the owner (UID) of the target file (as described in creden?

 tials(7), a process's filesystem UID is normally the same as

 its effective UID).

 * All of the following conditions are true:

 ? the target is a regular file;

 ? the target file does not have its set-user-ID mode bit

 enabled;

 ? the target file does not have both its set-group-ID and

 group-executable mode bits enabled; and

 ? the caller has permission to read and write the target

 file (either via the file's permissions mask or because

 it has suitable capabilities).

 The default value in this file is 0. Setting the value to 1

 prevents a longstanding class of security issues caused by hard-

 link-based time-of-check, time-of-use races, most commonly seen

 in world-writable directories such as /tmp. The common method Page 78/106

 of exploiting this flaw is to cross privilege boundaries when

 following a given hard link (i.e., a root process follows a hard

 link created by another user). Additionally, on systems without

 separated partitions, this stops unauthorized users from "pin?

 ning" vulnerable set-user-ID and set-group-ID files against be?

 ing upgraded by the administrator, or linking to special files.

 /proc/sys/fs/protected_regular (since Linux 4.19)

 The value in this file is/can be set to one of the following:

 0 Writing to regular files is unrestricted.

 1 Don't allow O_CREAT open(2) on regular files that the caller

 doesn't own in world-writable sticky directories, unless the

 regular file is owned by the owner of the directory.

 2 As for the value 1, but the restriction also applies to

 group-writable sticky directories.

 The intent of the above protections is similar to protected_fi?

 fos, but allows an application to avoid writes to an attacker-

 controlled regular file, where the application expected to cre?

 ate one.

 /proc/sys/fs/protected_symlinks (since Linux 3.6)

 When the value in this file is 0, no restrictions are placed on

 following symbolic links (i.e., this is the historical behavior

 before Linux 3.6). When the value in this file is 1, symbolic

 links are followed only in the following circumstances:

 * the filesystem UID of the process following the link matches

 the owner (UID) of the symbolic link (as described in creden?

 tials(7), a process's filesystem UID is normally the same as

 its effective UID);

 * the link is not in a sticky world-writable directory; or

 * the symbolic link and its parent directory have the same

 owner (UID)

 A system call that fails to follow a symbolic link because of

 the above restrictions returns the error EACCES in errno.

 The default value in this file is 0. Setting the value to 1 Page 79/106

 avoids a longstanding class of security issues based on time-of-

 check, time-of-use races when accessing symbolic links.

 /proc/sys/fs/suid_dumpable (since Linux 2.6.13)

 The value in this file is assigned to a process's "dumpable"

 flag in the circumstances described in prctl(2). In effect, the

 value in this file determines whether core dump files are pro?

 duced for set-user-ID or otherwise protected/tainted binaries.

 The "dumpable" setting also affects the ownership of files in a

 process's /proc/[pid] directory, as described above.

 Three different integer values can be specified:

 0 (default)

 This provides the traditional (pre-Linux 2.6.13) behav?

 ior. A core dump will not be produced for a process

 which has changed credentials (by calling seteuid(2),

 setgid(2), or similar, or by executing a set-user-ID or

 set-group-ID program) or whose binary does not have read

 permission enabled.

 1 ("debug")

 All processes dump core when possible. (Reasons why a

 process might nevertheless not dump core are described in

 core(5).) The core dump is owned by the filesystem user

 ID of the dumping process and no security is applied.

 This is intended for system debugging situations only:

 this mode is insecure because it allows unprivileged

 users to examine the memory contents of privileged pro?

 cesses.

 2 ("suidsafe")

 Any binary which normally would not be dumped (see "0"

 above) is dumped readable by root only. This allows the

 user to remove the core dump file but not to read it.

 For security reasons core dumps in this mode will not

 overwrite one another or other files. This mode is ap?

 propriate when administrators are attempting to debug Page 80/106

 problems in a normal environment.

 Additionally, since Linux 3.6, /proc/sys/kernel/core_pat?

 tern must either be an absolute pathname or a pipe com?

 mand, as detailed in core(5). Warnings will be written

 to the kernel log if core_pattern does not follow these

 rules, and no core dump will be produced.

 For details of the effect of a process's "dumpable" setting on

 ptrace access mode checking, see ptrace(2).

 /proc/sys/fs/super-max

 This file controls the maximum number of superblocks, and thus

 the maximum number of mounted filesystems the kernel can have.

 You need increase only super-max if you need to mount more

 filesystems than the current value in super-max allows you to.

 /proc/sys/fs/super-nr

 This file contains the number of filesystems currently mounted.

 /proc/sys/kernel

 This directory contains files controlling a range of kernel pa?

 rameters, as described below.

 /proc/sys/kernel/acct

 This file contains three numbers: highwater, lowwater, and fre?

 quency. If BSD-style process accounting is enabled, these val?

 ues control its behavior. If free space on filesystem where the

 log lives goes below lowwater percent, accounting suspends. If

 free space gets above highwater percent, accounting resumes.

 frequency determines how often the kernel checks the amount of

 free space (value is in seconds). Default values are 4, 2 and

 30. That is, suspend accounting if 2% or less space is free;

 resume it if 4% or more space is free; consider information

 about amount of free space valid for 30 seconds.

 /proc/sys/kernel/auto_msgmni (Linux 2.6.27 to 3.18)

 From Linux 2.6.27 to 3.18, this file was used to control recom?

 puting of the value in /proc/sys/kernel/msgmni upon the addition

 or removal of memory or upon IPC namespace creation/removal. Page 81/106

 Echoing "1" into this file enabled msgmni automatic recomputing

 (and triggered a recomputation of msgmni based on the current

 amount of available memory and number of IPC namespaces). Echo?

 ing "0" disabled automatic recomputing. (Automatic recomputing

 was also disabled if a value was explicitly assigned to

 /proc/sys/kernel/msgmni.) The default value in auto_msgmni was

 1.

 Since Linux 3.19, the content of this file has no effect (be?

 cause msgmni defaults to near the maximum value possible), and

 reads from this file always return the value "0".

 /proc/sys/kernel/cap_last_cap (since Linux 3.2)

 See capabilities(7).

 /proc/sys/kernel/cap-bound (from Linux 2.2 to 2.6.24)

 This file holds the value of the kernel capability bounding set

 (expressed as a signed decimal number). This set is ANDed

 against the capabilities permitted to a process during ex?

 ecve(2). Starting with Linux 2.6.25, the system-wide capability

 bounding set disappeared, and was replaced by a per-thread

 bounding set; see capabilities(7).

 /proc/sys/kernel/core_pattern

 See core(5).

 /proc/sys/kernel/core_pipe_limit

 See core(5).

 /proc/sys/kernel/core_uses_pid

 See core(5).

 /proc/sys/kernel/ctrl-alt-del

 This file controls the handling of Ctrl-Alt-Del from the key?

 board. When the value in this file is 0, Ctrl-Alt-Del is

 trapped and sent to the init(1) program to handle a graceful

 restart. When the value is greater than zero, Linux's reaction

 to a Vulcan Nerve Pinch (tm) will be an immediate reboot, with?

 out even syncing its dirty buffers. Note: when a program (like

 dosemu) has the keyboard in "raw" mode, the ctrl-alt-del is in? Page 82/106

 tercepted by the program before it ever reaches the kernel tty

 layer, and it's up to the program to decide what to do with it.

 /proc/sys/kernel/dmesg_restrict (since Linux 2.6.37)

 The value in this file determines who can see kernel syslog con?

 tents. A value of 0 in this file imposes no restrictions. If

 the value is 1, only privileged users can read the kernel sys?

 log. (See syslog(2) for more details.) Since Linux 3.4, only

 users with the CAP_SYS_ADMIN capability may change the value in

 this file.

 /proc/sys/kernel/domainname and /proc/sys/kernel/hostname

 can be used to set the NIS/YP domainname and the hostname of

 your box in exactly the same way as the commands domainname(1)

 and hostname(1), that is:

 # echo 'darkstar' > /proc/sys/kernel/hostname

 # echo 'mydomain' > /proc/sys/kernel/domainname

 has the same effect as

 # hostname 'darkstar'

 # domainname 'mydomain'

 Note, however, that the classic darkstar.frop.org has the host?

 name "darkstar" and DNS (Internet Domain Name Server) domainname

 "frop.org", not to be confused with the NIS (Network Information

 Service) or YP (Yellow Pages) domainname. These two domain

 names are in general different. For a detailed discussion see

 the hostname(1) man page.

 /proc/sys/kernel/hotplug

 This file contains the pathname for the hotplug policy agent.

 The default value in this file is /sbin/hotplug.

 /proc/sys/kernel/htab-reclaim (before Linux 2.4.9.2)

 (PowerPC only) If this file is set to a nonzero value, the Pow?

 erPC htab (see kernel file Documentation/powerpc/ppc_htab.txt)

 is pruned each time the system hits the idle loop.

 /proc/sys/kernel/keys/*

 This directory contains various files that define parameters and Page 83/106

 limits for the key-management facility. These files are de?

 scribed in keyrings(7).

 /proc/sys/kernel/kptr_restrict (since Linux 2.6.38)

 The value in this file determines whether kernel addresses are

 exposed via /proc files and other interfaces. A value of 0 in

 this file imposes no restrictions. If the value is 1, kernel

 pointers printed using the %pK format specifier will be replaced

 with zeros unless the user has the CAP_SYSLOG capability. If

 the value is 2, kernel pointers printed using the %pK format

 specifier will be replaced with zeros regardless of the user's

 capabilities. The initial default value for this file was 1,

 but the default was changed to 0 in Linux 2.6.39. Since Linux

 3.4, only users with the CAP_SYS_ADMIN capability can change the

 value in this file.

 /proc/sys/kernel/l2cr

 (PowerPC only) This file contains a flag that controls the L2

 cache of G3 processor boards. If 0, the cache is disabled. En?

 abled if nonzero.

 /proc/sys/kernel/modprobe

 This file contains the pathname for the kernel module loader.

 The default value is /sbin/modprobe. The file is present only

 if the kernel is built with the CONFIG_MODULES (CONFIG_KMOD in

 Linux 2.6.26 and earlier) option enabled. It is described by

 the Linux kernel source file Documentation/kmod.txt (present

 only in kernel 2.4 and earlier).

 /proc/sys/kernel/modules_disabled (since Linux 2.6.31)

 A toggle value indicating if modules are allowed to be loaded in

 an otherwise modular kernel. This toggle defaults to off (0),

 but can be set true (1). Once true, modules can be neither

 loaded nor unloaded, and the toggle cannot be set back to false.

 The file is present only if the kernel is built with the CON?

 FIG_MODULES option enabled.

 /proc/sys/kernel/msgmax (since Linux 2.2) Page 84/106

 This file defines a system-wide limit specifying the maximum

 number of bytes in a single message written on a System V mes?

 sage queue.

 /proc/sys/kernel/msgmni (since Linux 2.4)

 This file defines the system-wide limit on the number of message

 queue identifiers. See also /proc/sys/kernel/auto_msgmni.

 /proc/sys/kernel/msgmnb (since Linux 2.2)

 This file defines a system-wide parameter used to initialize the

 msg_qbytes setting for subsequently created message queues. The

 msg_qbytes setting specifies the maximum number of bytes that

 may be written to the message queue.

 /proc/sys/kernel/ngroups_max (since Linux 2.6.4)

 This is a read-only file that displays the upper limit on the

 number of a process's group memberships.

 /proc/sys/kernel/ns_last_pid (since Linux 3.3)

 See pid_namespaces(7).

 /proc/sys/kernel/ostype and /proc/sys/kernel/osrelease

 These files give substrings of /proc/version.

 /proc/sys/kernel/overflowgid and /proc/sys/kernel/overflowuid

 These files duplicate the files /proc/sys/fs/overflowgid and

 /proc/sys/fs/overflowuid.

 /proc/sys/kernel/panic

 This file gives read/write access to the kernel variable

 panic_timeout. If this is zero, the kernel will loop on a

 panic; if nonzero, it indicates that the kernel should autore?

 boot after this number of seconds. When you use the software

 watchdog device driver, the recommended setting is 60.

 /proc/sys/kernel/panic_on_oops (since Linux 2.5.68)

 This file controls the kernel's behavior when an oops or BUG is

 encountered. If this file contains 0, then the system tries to

 continue operation. If it contains 1, then the system delays a

 few seconds (to give klogd time to record the oops output) and

 then panics. If the /proc/sys/kernel/panic file is also non? Page 85/106

 zero, then the machine will be rebooted.

 /proc/sys/kernel/pid_max (since Linux 2.5.34)

 This file specifies the value at which PIDs wrap around (i.e.,

 the value in this file is one greater than the maximum PID).

 PIDs greater than this value are not allocated; thus, the value

 in this file also acts as a system-wide limit on the total num?

 ber of processes and threads. The default value for this file,

 32768, results in the same range of PIDs as on earlier kernels.

 On 32-bit platforms, 32768 is the maximum value for pid_max. On

 64-bit systems, pid_max can be set to any value up to 2^22

 (PID_MAX_LIMIT, approximately 4 million).

 /proc/sys/kernel/powersave-nap (PowerPC only)

 This file contains a flag. If set, Linux-PPC will use the "nap"

 mode of powersaving, otherwise the "doze" mode will be used.

 /proc/sys/kernel/printk

 See syslog(2).

 /proc/sys/kernel/pty (since Linux 2.6.4)

 This directory contains two files relating to the number of UNIX

 98 pseudoterminals (see pts(4)) on the system.

 /proc/sys/kernel/pty/max

 This file defines the maximum number of pseudoterminals.

 /proc/sys/kernel/pty/nr

 This read-only file indicates how many pseudoterminals are cur?

 rently in use.

 /proc/sys/kernel/random

 This directory contains various parameters controlling the oper?

 ation of the file /dev/random. See random(4) for further infor?

 mation.

 /proc/sys/kernel/random/uuid (since Linux 2.4)

 Each read from this read-only file returns a randomly generated

 128-bit UUID, as a string in the standard UUID format.

 /proc/sys/kernel/randomize_va_space (since Linux 2.6.12)

 Select the address space layout randomization (ASLR) policy for Page 86/106

 the system (on architectures that support ASLR). Three values

 are supported for this file:

 0 Turn ASLR off. This is the default for architectures that

 don't support ASLR, and when the kernel is booted with the

 norandmaps parameter.

 1 Make the addresses of mmap(2) allocations, the stack, and the

 VDSO page randomized. Among other things, this means that

 shared libraries will be loaded at randomized addresses. The

 text segment of PIE-linked binaries will also be loaded at a

 randomized address. This value is the default if the kernel

 was configured with CONFIG_COMPAT_BRK.

 2 (Since Linux 2.6.25) Also support heap randomization. This

 value is the default if the kernel was not configured with

 CONFIG_COMPAT_BRK.

 /proc/sys/kernel/real-root-dev

 This file is documented in the Linux kernel source file Documen?

 tation/admin-guide/initrd.rst (or Documentation/initrd.txt be?

 fore Linux 4.10).

 /proc/sys/kernel/reboot-cmd (Sparc only)

 This file seems to be a way to give an argument to the SPARC

 ROM/Flash boot loader. Maybe to tell it what to do after re?

 booting?

 /proc/sys/kernel/rtsig-max

 (Only in kernels up to and including 2.6.7; see setrlimit(2))

 This file can be used to tune the maximum number of POSIX real-

 time (queued) signals that can be outstanding in the system.

 /proc/sys/kernel/rtsig-nr

 (Only in kernels up to and including 2.6.7.) This file shows

 the number of POSIX real-time signals currently queued.

 /proc/[pid]/sched_autogroup_enabled (since Linux 2.6.38)

 See sched(7).

 /proc/sys/kernel/sched_child_runs_first (since Linux 2.6.23)

 If this file contains the value zero, then, after a fork(2), the Page 87/106

 parent is first scheduled on the CPU. If the file contains a

 nonzero value, then the child is scheduled first on the CPU.

 (Of course, on a multiprocessor system, the parent and the child

 might both immediately be scheduled on a CPU.)

 /proc/sys/kernel/sched_rr_timeslice_ms (since Linux 3.9)

 See sched_rr_get_interval(2).

 /proc/sys/kernel/sched_rt_period_us (since Linux 2.6.25)

 See sched(7).

 /proc/sys/kernel/sched_rt_runtime_us (since Linux 2.6.25)

 See sched(7).

 /proc/sys/kernel/seccomp (since Linux 4.14)

 This directory provides additional seccomp information and con?

 figuration. See seccomp(2) for further details.

 /proc/sys/kernel/sem (since Linux 2.4)

 This file contains 4 numbers defining limits for System V IPC

 semaphores. These fields are, in order:

 SEMMSL The maximum semaphores per semaphore set.

 SEMMNS A system-wide limit on the number of semaphores in all

 semaphore sets.

 SEMOPM The maximum number of operations that may be specified

 in a semop(2) call.

 SEMMNI A system-wide limit on the maximum number of semaphore

 identifiers.

 /proc/sys/kernel/sg-big-buff

 This file shows the size of the generic SCSI device (sg) buffer.

 You can't tune it just yet, but you could change it at compile

 time by editing include/scsi/sg.h and changing the value of

 SG_BIG_BUFF. However, there shouldn't be any reason to change

 this value.

 /proc/sys/kernel/shm_rmid_forced (since Linux 3.1)

 If this file is set to 1, all System V shared memory segments

 will be marked for destruction as soon as the number of attached

 processes falls to zero; in other words, it is no longer possi? Page 88/106

 ble to create shared memory segments that exist independently of

 any attached process.

 The effect is as though a shmctl(2) IPC_RMID is performed on all

 existing segments as well as all segments created in the future

 (until this file is reset to 0). Note that existing segments

 that are attached to no process will be immediately destroyed

 when this file is set to 1. Setting this option will also de?

 stroy segments that were created, but never attached, upon ter?

 mination of the process that created the segment with shmget(2).

 Setting this file to 1 provides a way of ensuring that all Sys?

 tem V shared memory segments are counted against the resource

 usage and resource limits (see the description of RLIMIT_AS in

 getrlimit(2)) of at least one process.

 Because setting this file to 1 produces behavior that is non?

 standard and could also break existing applications, the default

 value in this file is 0. Set this file to 1 only if you have a

 good understanding of the semantics of the applications using

 System V shared memory on your system.

 /proc/sys/kernel/shmall (since Linux 2.2)

 This file contains the system-wide limit on the total number of

 pages of System V shared memory.

 /proc/sys/kernel/shmmax (since Linux 2.2)

 This file can be used to query and set the run-time limit on the

 maximum (System V IPC) shared memory segment size that can be

 created. Shared memory segments up to 1 GB are now supported in

 the kernel. This value defaults to SHMMAX.

 /proc/sys/kernel/shmmni (since Linux 2.4)

 This file specifies the system-wide maximum number of System V

 shared memory segments that can be created.

 /proc/sys/kernel/sysctl_writes_strict (since Linux 3.16)

 The value in this file determines how the file offset affects

 the behavior of updating entries in files under /proc/sys. The

 file has three possible values: Page 89/106

 -1 This provides legacy handling, with no printk warnings.

 Each write(2) must fully contain the value to be written,

 and multiple writes on the same file descriptor will over?

 write the entire value, regardless of the file position.

 0 (default) This provides the same behavior as for -1, but

 printk warnings are written for processes that perform

 writes when the file offset is not 0.

 1 Respect the file offset when writing strings into /proc/sys

 files. Multiple writes will append to the value buffer.

 Anything written beyond the maximum length of the value buf?

 fer will be ignored. Writes to numeric /proc/sys entries

 must always be at file offset 0 and the value must be fully

 contained in the buffer provided to write(2).

 /proc/sys/kernel/sysrq

 This file controls the functions allowed to be invoked by the

 SysRq key. By default, the file contains 1 meaning that every

 possible SysRq request is allowed (in older kernel versions,

 SysRq was disabled by default, and you were required to specifi?

 cally enable it at run-time, but this is not the case any more).

 Possible values in this file are:

 0 Disable sysrq completely

 1 Enable all functions of sysrq

 > 1 Bit mask of allowed sysrq functions, as follows:

 2 Enable control of console logging level

 4 Enable control of keyboard (SAK, unraw)

 8 Enable debugging dumps of processes etc.

 16 Enable sync command

 32 Enable remount read-only

 64 Enable signaling of processes (term, kill, oom-kill)

 128 Allow reboot/poweroff

 256 Allow nicing of all real-time tasks

 This file is present only if the CONFIG_MAGIC_SYSRQ kernel con?

 figuration option is enabled. For further details see the Linux Page 90/106

 kernel source file Documentation/admin-guide/sysrq.rst (or Docu?

 mentation/sysrq.txt before Linux 4.10).

 /proc/sys/kernel/version

 This file contains a string such as:

 #5 Wed Feb 25 21:49:24 MET 1998

 The "#5" means that this is the fifth kernel built from this

 source base and the date following it indicates the time the

 kernel was built.

 /proc/sys/kernel/threads-max (since Linux 2.3.11)

 This file specifies the system-wide limit on the number of

 threads (tasks) that can be created on the system.

 Since Linux 4.1, the value that can be written to threads-max is

 bounded. The minimum value that can be written is 20. The max?

 imum value that can be written is given by the constant FU?

 TEX_TID_MASK (0x3fffffff). If a value outside of this range is

 written to threads-max, the error EINVAL occurs.

 The value written is checked against the available RAM pages.

 If the thread structures would occupy too much (more than 1/8th)

 of the available RAM pages, threads-max is reduced accordingly.

 /proc/sys/kernel/yama/ptrace_scope (since Linux 3.5)

 See ptrace(2).

 /proc/sys/kernel/zero-paged (PowerPC only)

 This file contains a flag. When enabled (nonzero), Linux-PPC

 will pre-zero pages in the idle loop, possibly speeding up

 get_free_pages.

 /proc/sys/net

 This directory contains networking stuff. Explanations for some

 of the files under this directory can be found in tcp(7) and

 ip(7).

 /proc/sys/net/core/bpf_jit_enable

 See bpf(2).

 /proc/sys/net/core/somaxconn

 This file defines a ceiling value for the backlog argument of Page 91/106

 listen(2); see the listen(2) manual page for details.

 /proc/sys/proc

 This directory may be empty.

 /proc/sys/sunrpc

 This directory supports Sun remote procedure call for network

 filesystem (NFS). On some systems, it is not present.

 /proc/sys/user (since Linux 4.9)

 See namespaces(7).

 /proc/sys/vm

 This directory contains files for memory management tuning, buf?

 fer and cache management.

 /proc/sys/vm/admin_reserve_kbytes (since Linux 3.10)

 This file defines the amount of free memory (in KiB) on the sys?

 tem that should be reserved for users with the capability

 CAP_SYS_ADMIN.

 The default value in this file is the minimum of [3% of free

 pages, 8MiB] expressed as KiB. The default is intended to pro?

 vide enough for the superuser to log in and kill a process, if

 necessary, under the default overcommit 'guess' mode (i.e., 0 in

 /proc/sys/vm/overcommit_memory).

 Systems running in "overcommit never" mode (i.e., 2 in

 /proc/sys/vm/overcommit_memory) should increase the value in

 this file to account for the full virtual memory size of the

 programs used to recover (e.g., login(1) ssh(1), and top(1))

 Otherwise, the superuser may not be able to log in to recover

 the system. For example, on x86-64 a suitable value is 131072

 (128MiB reserved).

 Changing the value in this file takes effect whenever an appli?

 cation requests memory.

 /proc/sys/vm/compact_memory (since Linux 2.6.35)

 When 1 is written to this file, all zones are compacted such

 that free memory is available in contiguous blocks where possi?

 ble. The effect of this action can be seen by examining Page 92/106

 /proc/buddyinfo.

 Present only if the kernel was configured with CONFIG_COM?

 PACTION.

 /proc/sys/vm/drop_caches (since Linux 2.6.16)

 Writing to this file causes the kernel to drop clean caches,

 dentries, and inodes from memory, causing that memory to become

 free. This can be useful for memory management testing and per?

 forming reproducible filesystem benchmarks. Because writing to

 this file causes the benefits of caching to be lost, it can de?

 grade overall system performance.

 To free pagecache, use:

 echo 1 > /proc/sys/vm/drop_caches

 To free dentries and inodes, use:

 echo 2 > /proc/sys/vm/drop_caches

 To free pagecache, dentries and inodes, use:

 echo 3 > /proc/sys/vm/drop_caches

 Because writing to this file is a nondestructive operation and

 dirty objects are not freeable, the user should run sync(1)

 first.

 /proc/sys/vm/legacy_va_layout (since Linux 2.6.9)

 If nonzero, this disables the new 32-bit memory-mapping layout;

 the kernel will use the legacy (2.4) layout for all processes.

 /proc/sys/vm/memory_failure_early_kill (since Linux 2.6.32)

 Control how to kill processes when an uncorrected memory error

 (typically a 2-bit error in a memory module) that cannot be han?

 dled by the kernel is detected in the background by hardware.

 In some cases (like the page still having a valid copy on disk),

 the kernel will handle the failure transparently without affect?

 ing any applications. But if there is no other up-to-date copy

 of the data, it will kill processes to prevent any data corrup?

 tions from propagating.

 The file has one of the following values:

 1: Kill all processes that have the corrupted-and-not-reload? Page 93/106

 able page mapped as soon as the corruption is detected.

 Note that this is not supported for a few types of pages,

 such as kernel internally allocated data or the swap cache,

 but works for the majority of user pages.

 0: Unmap the corrupted page from all processes and kill a

 process only if it tries to access the page.

 The kill is performed using a SIGBUS signal with si_code set to

 BUS_MCEERR_AO. Processes can handle this if they want to; see

 sigaction(2) for more details.

 This feature is active only on architectures/platforms with ad?

 vanced machine check handling and depends on the hardware capa?

 bilities.

 Applications can override the memory_failure_early_kill setting

 individually with the prctl(2) PR_MCE_KILL operation.

 Present only if the kernel was configured with CONFIG_MEM?

 ORY_FAILURE.

 /proc/sys/vm/memory_failure_recovery (since Linux 2.6.32)

 Enable memory failure recovery (when supported by the platform).

 1: Attempt recovery.

 0: Always panic on a memory failure.

 Present only if the kernel was configured with CONFIG_MEM?

 ORY_FAILURE.

 /proc/sys/vm/oom_dump_tasks (since Linux 2.6.25)

 Enables a system-wide task dump (excluding kernel threads) to be

 produced when the kernel performs an OOM-killing. The dump in?

 cludes the following information for each task (thread,

 process): thread ID, real user ID, thread group ID (process ID),

 virtual memory size, resident set size, the CPU that the task is

 scheduled on, oom_adj score (see the description of

 /proc/[pid]/oom_adj), and command name. This is helpful to de?

 termine why the OOM-killer was invoked and to identify the rogue

 task that caused it.

 If this contains the value zero, this information is suppressed. Page 94/106

 On very large systems with thousands of tasks, it may not be

 feasible to dump the memory state information for each one.

 Such systems should not be forced to incur a performance penalty

 in OOM situations when the information may not be desired.

 If this is set to nonzero, this information is shown whenever

 the OOM-killer actually kills a memory-hogging task.

 The default value is 0.

 /proc/sys/vm/oom_kill_allocating_task (since Linux 2.6.24)

 This enables or disables killing the OOM-triggering task in out-

 of-memory situations.

 If this is set to zero, the OOM-killer will scan through the en?

 tire tasklist and select a task based on heuristics to kill.

 This normally selects a rogue memory-hogging task that frees up

 a large amount of memory when killed.

 If this is set to nonzero, the OOM-killer simply kills the task

 that triggered the out-of-memory condition. This avoids a pos?

 sibly expensive tasklist scan.

 If /proc/sys/vm/panic_on_oom is nonzero, it takes precedence

 over whatever value is used in /proc/sys/vm/oom_kill_allocat?

 ing_task.

 The default value is 0.

 /proc/sys/vm/overcommit_kbytes (since Linux 3.14)

 This writable file provides an alternative to /proc/sys/vm/over?

 commit_ratio for controlling the CommitLimit when

 /proc/sys/vm/overcommit_memory has the value 2. It allows the

 amount of memory overcommitting to be specified as an absolute

 value (in kB), rather than as a percentage, as is done with

 overcommit_ratio. This allows for finer-grained control of Com?

 mitLimit on systems with extremely large memory sizes.

 Only one of overcommit_kbytes or overcommit_ratio can have an

 effect: if overcommit_kbytes has a nonzero value, then it is

 used to calculate CommitLimit, otherwise overcommit_ratio is

 used. Writing a value to either of these files causes the value Page 95/106

 in the other file to be set to zero.

 /proc/sys/vm/overcommit_memory

 This file contains the kernel virtual memory accounting mode.

 Values are:

 0: heuristic overcommit (this is the default)

 1: always overcommit, never check

 2: always check, never overcommit

 In mode 0, calls of mmap(2) with MAP_NORESERVE are not checked,

 and the default check is very weak, leading to the risk of get?

 ting a process "OOM-killed".

 In mode 1, the kernel pretends there is always enough memory,

 until memory actually runs out. One use case for this mode is

 scientific computing applications that employ large sparse ar?

 rays. In Linux kernel versions before 2.6.0, any nonzero value

 implies mode 1.

 In mode 2 (available since Linux 2.6), the total virtual address

 space that can be allocated (CommitLimit in /proc/meminfo) is

 calculated as

 CommitLimit = (total_RAM - total_huge_TLB) *

 overcommit_ratio / 100 + total_swap

 where:

 * total_RAM is the total amount of RAM on the system;

 * total_huge_TLB is the amount of memory set aside for

 huge pages;

 * overcommit_ratio is the value in /proc/sys/vm/overcom?

 mit_ratio; and

 * total_swap is the amount of swap space.

 For example, on a system with 16 GB of physical RAM, 16 GB of

 swap, no space dedicated to huge pages, and an overcommit_ratio

 of 50, this formula yields a CommitLimit of 24 GB.

 Since Linux 3.14, if the value in /proc/sys/vm/overcommit_kbytes

 is nonzero, then CommitLimit is instead calculated as:

 CommitLimit = overcommit_kbytes + total_swap Page 96/106

 See also the description of /proc/sys/vm/admin_reserve_kbytes

 and /proc/sys/vm/user_reserve_kbytes.

 /proc/sys/vm/overcommit_ratio (since Linux 2.6.0)

 This writable file defines a percentage by which memory can be

 overcommitted. The default value in the file is 50. See the

 description of /proc/sys/vm/overcommit_memory.

 /proc/sys/vm/panic_on_oom (since Linux 2.6.18)

 This enables or disables a kernel panic in an out-of-memory sit?

 uation.

 If this file is set to the value 0, the kernel's OOM-killer will

 kill some rogue process. Usually, the OOM-killer is able to

 kill a rogue process and the system will survive.

 If this file is set to the value 1, then the kernel normally

 panics when out-of-memory happens. However, if a process limits

 allocations to certain nodes using memory policies (mbind(2)

 MPOL_BIND) or cpusets (cpuset(7)) and those nodes reach memory

 exhaustion status, one process may be killed by the OOM-killer.

 No panic occurs in this case: because other nodes' memory may be

 free, this means the system as a whole may not have reached an

 out-of-memory situation yet.

 If this file is set to the value 2, the kernel always panics

 when an out-of-memory condition occurs.

 The default value is 0. 1 and 2 are for failover of clustering.

 Select either according to your policy of failover.

 /proc/sys/vm/swappiness

 The value in this file controls how aggressively the kernel will

 swap memory pages. Higher values increase aggressiveness, lower

 values decrease aggressiveness. The default value is 60.

 /proc/sys/vm/user_reserve_kbytes (since Linux 3.10)

 Specifies an amount of memory (in KiB) to reserve for user pro?

 cesses. This is intended to prevent a user from starting a sin?

 gle memory hogging process, such that they cannot recover (kill

 the hog). The value in this file has an effect only when Page 97/106

 /proc/sys/vm/overcommit_memory is set to 2 ("overcommit never"

 mode). In this case, the system reserves an amount of memory

 that is the minimum of [3% of current process size, user_re?

 serve_kbytes].

 The default value in this file is the minimum of [3% of free

 pages, 128MiB] expressed as KiB.

 If the value in this file is set to zero, then a user will be

 allowed to allocate all free memory with a single process (minus

 the amount reserved by /proc/sys/vm/admin_reserve_kbytes). Any

 subsequent attempts to execute a command will result in "fork:

 Cannot allocate memory".

 Changing the value in this file takes effect whenever an appli?

 cation requests memory.

 /proc/sys/vm/unprivileged_userfaultfd (since Linux 5.2)

 This (writable) file exposes a flag that controls whether un?

 privileged processes are allowed to employ userfaultfd(2). If

 this file has the value 1, then unprivileged processes may use

 userfaultfd(2). If this file has the value 0, then only pro?

 cesses that have the CAP_SYS_PTRACE capability may employ user?

 faultfd(2). The default value in this file is 1.

 /proc/sysrq-trigger (since Linux 2.4.21)

 Writing a character to this file triggers the same SysRq func?

 tion as typing ALT-SysRq-<character> (see the description of

 /proc/sys/kernel/sysrq). This file is normally writable only by

 root. For further details see the Linux kernel source file Doc?

 umentation/admin-guide/sysrq.rst (or Documentation/sysrq.txt be?

 fore Linux 4.10).

 /proc/sysvipc

 Subdirectory containing the pseudo-files msg, sem and shm.

 These files list the System V Interprocess Communication (IPC)

 objects (respectively: message queues, semaphores, and shared

 memory) that currently exist on the system, providing similar

 information to that available via ipcs(1). These files have Page 98/106

 headers and are formatted (one IPC object per line) for easy un?

 derstanding. sysvipc(7) provides further background on the in?

 formation shown by these files.

 /proc/thread-self (since Linux 3.17)

 This directory refers to the thread accessing the /proc filesys?

 tem, and is identical to the /proc/self/task/[tid] directory

 named by the process thread ID ([tid]) of the same thread.

 /proc/timer_list (since Linux 2.6.21)

 This read-only file exposes a list of all currently pending

 (high-resolution) timers, all clock-event sources, and their pa?

 rameters in a human-readable form.

 /proc/timer_stats (from Linux 2.6.21 until Linux 4.10)

 This is a debugging facility to make timer (ab)use in a Linux

 system visible to kernel and user-space developers. It can be

 used by kernel and user-space developers to verify that their

 code does not make undue use of timers. The goal is to avoid

 unnecessary wakeups, thereby optimizing power consumption.

 If enabled in the kernel (CONFIG_TIMER_STATS), but not used, it

 has almost zero run-time overhead and a relatively small data-

 structure overhead. Even if collection is enabled at run time,

 overhead is low: all the locking is per-CPU and lookup is

 hashed.

 The /proc/timer_stats file is used both to control sampling fa?

 cility and to read out the sampled information.

 The timer_stats functionality is inactive on bootup. A sampling

 period can be started using the following command:

 # echo 1 > /proc/timer_stats

 The following command stops a sampling period:

 # echo 0 > /proc/timer_stats

 The statistics can be retrieved by:

 $ cat /proc/timer_stats

 While sampling is enabled, each readout from /proc/timer_stats

 will see newly updated statistics. Once sampling is disabled, Page 99/106

 the sampled information is kept until a new sample period is

 started. This allows multiple readouts.

 Sample output from /proc/timer_stats:

 $ cat /proc/timer_stats

 Timer Stats Version: v0.3

 Sample period: 1.764 s

 Collection: active

 255, 0 swapper/3 hrtimer_start_range_ns (tick_sched_timer)

 71, 0 swapper/1 hrtimer_start_range_ns (tick_sched_timer)

 58, 0 swapper/0 hrtimer_start_range_ns (tick_sched_timer)

 4, 1694 gnome-shell mod_delayed_work_on (delayed_work_timer_fn)

 17, 7 rcu_sched rcu_gp_kthread (process_timeout)

 ...

 1, 4911 kworker/u16:0 mod_delayed_work_on (delayed_work_timer_fn)

 1D, 2522 kworker/0:0 queue_delayed_work_on (delayed_work_timer_fn)

 1029 total events, 583.333 events/sec

 The output columns are:

 * a count of the number of events, optionally (since Linux

 2.6.23) followed by the letter 'D' if this is a deferrable

 timer;

 * the PID of the process that initialized the timer;

 * the name of the process that initialized the timer;

 * the function where the timer was initialized; and

 * (in parentheses) the callback function that is associated

 with the timer.

 During the Linux 4.11 development cycle, this file was removed

 because of security concerns, as it exposes information across

 namespaces. Furthermore, it is possible to obtain the same in?

 formation via in-kernel tracing facilities such as ftrace.

 /proc/tty

 Subdirectory containing the pseudo-files and subdirectories for

 tty drivers and line disciplines.

 /proc/uptime Page 100/106

 This file contains two numbers (values in seconds): the uptime

 of the system (including time spent in suspend) and the amount

 of time spent in the idle process.

 /proc/version

 This string identifies the kernel version that is currently run?

 ning. It includes the contents of /proc/sys/kernel/ostype,

 /proc/sys/kernel/osrelease, and /proc/sys/kernel/version. For

 example:

 Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

 /proc/vmstat (since Linux 2.6.0)

 This file displays various virtual memory statistics. Each line

 of this file contains a single name-value pair, delimited by

 white space. Some lines are present only if the kernel was con?

 figured with suitable options. (In some cases, the options re?

 quired for particular files have changed across kernel versions,

 so they are not listed here. Details can be found by consulting

 the kernel source code.) The following fields may be present:

 nr_free_pages (since Linux 2.6.31)

 nr_alloc_batch (since Linux 3.12)

 nr_inactive_anon (since Linux 2.6.28)

 nr_active_anon (since Linux 2.6.28)

 nr_inactive_file (since Linux 2.6.28)

 nr_active_file (since Linux 2.6.28)

 nr_unevictable (since Linux 2.6.28)

 nr_mlock (since Linux 2.6.28)

 nr_anon_pages (since Linux 2.6.18)

 nr_mapped (since Linux 2.6.0)

 nr_file_pages (since Linux 2.6.18)

 nr_dirty (since Linux 2.6.0)

 nr_writeback (since Linux 2.6.0)

 nr_slab_reclaimable (since Linux 2.6.19)

 nr_slab_unreclaimable (since Linux 2.6.19)

 nr_page_table_pages (since Linux 2.6.0) Page 101/106

 nr_kernel_stack (since Linux 2.6.32)

 Amount of memory allocated to kernel stacks.

 nr_unstable (since Linux 2.6.0)

 nr_bounce (since Linux 2.6.12)

 nr_vmscan_write (since Linux 2.6.19)

 nr_vmscan_immediate_reclaim (since Linux 3.2)

 nr_writeback_temp (since Linux 2.6.26)

 nr_isolated_anon (since Linux 2.6.32)

 nr_isolated_file (since Linux 2.6.32)

 nr_shmem (since Linux 2.6.32)

 Pages used by shmem and tmpfs(5).

 nr_dirtied (since Linux 2.6.37)

 nr_written (since Linux 2.6.37)

 nr_pages_scanned (since Linux 3.17)

 numa_hit (since Linux 2.6.18)

 numa_miss (since Linux 2.6.18)

 numa_foreign (since Linux 2.6.18)

 numa_interleave (since Linux 2.6.18)

 numa_local (since Linux 2.6.18)

 numa_other (since Linux 2.6.18)

 workingset_refault (since Linux 3.15)

 workingset_activate (since Linux 3.15)

 workingset_nodereclaim (since Linux 3.15)

 nr_anon_transparent_hugepages (since Linux 2.6.38)

 nr_free_cma (since Linux 3.7)

 Number of free CMA (Contiguous Memory Allocator) pages.

 nr_dirty_threshold (since Linux 2.6.37)

 nr_dirty_background_threshold (since Linux 2.6.37)

 pgpgin (since Linux 2.6.0)

 pgpgout (since Linux 2.6.0)

 pswpin (since Linux 2.6.0)

 pswpout (since Linux 2.6.0)

 pgalloc_dma (since Linux 2.6.5) Page 102/106

 pgalloc_dma32 (since Linux 2.6.16)

 pgalloc_normal (since Linux 2.6.5)

 pgalloc_high (since Linux 2.6.5)

 pgalloc_movable (since Linux 2.6.23)

 pgfree (since Linux 2.6.0)

 pgactivate (since Linux 2.6.0)

 pgdeactivate (since Linux 2.6.0)

 pgfault (since Linux 2.6.0)

 pgmajfault (since Linux 2.6.0)

 pgrefill_dma (since Linux 2.6.5)

 pgrefill_dma32 (since Linux 2.6.16)

 pgrefill_normal (since Linux 2.6.5)

 pgrefill_high (since Linux 2.6.5)

 pgrefill_movable (since Linux 2.6.23)

 pgsteal_kswapd_dma (since Linux 3.4)

 pgsteal_kswapd_dma32 (since Linux 3.4)

 pgsteal_kswapd_normal (since Linux 3.4)

 pgsteal_kswapd_high (since Linux 3.4)

 pgsteal_kswapd_movable (since Linux 3.4)

 pgsteal_direct_dma

 pgsteal_direct_dma32 (since Linux 3.4)

 pgsteal_direct_normal (since Linux 3.4)

 pgsteal_direct_high (since Linux 3.4)

 pgsteal_direct_movable (since Linux 2.6.23)

 pgscan_kswapd_dma

 pgscan_kswapd_dma32 (since Linux 2.6.16)

 pgscan_kswapd_normal (since Linux 2.6.5)

 pgscan_kswapd_high

 pgscan_kswapd_movable (since Linux 2.6.23)

 pgscan_direct_dma

 pgscan_direct_dma32 (since Linux 2.6.16)

 pgscan_direct_normal

 pgscan_direct_high Page 103/106

 pgscan_direct_movable (since Linux 2.6.23)

 pgscan_direct_throttle (since Linux 3.6)

 zone_reclaim_failed (since linux 2.6.31)

 pginodesteal (since linux 2.6.0)

 slabs_scanned (since linux 2.6.5)

 kswapd_inodesteal (since linux 2.6.0)

 kswapd_low_wmark_hit_quickly (since 2.6.33)

 kswapd_high_wmark_hit_quickly (since 2.6.33)

 pageoutrun (since Linux 2.6.0)

 allocstall (since Linux 2.6.0)

 pgrotated (since Linux 2.6.0)

 drop_pagecache (since Linux 3.15)

 drop_slab (since Linux 3.15)

 numa_pte_updates (since Linux 3.8)

 numa_huge_pte_updates (since Linux 3.13)

 numa_hint_faults (since Linux 3.8)

 numa_hint_faults_local (since Linux 3.8)

 numa_pages_migrated (since Linux 3.8)

 pgmigrate_success (since Linux 3.8)

 pgmigrate_fail (since Linux 3.8)

 compact_migrate_scanned (since Linux 3.8)

 compact_free_scanned (since Linux 3.8)

 compact_isolated (since Linux 3.8)

 compact_stall (since Linux 2.6.35)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 compact_fail (since Linux 2.6.35)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 compact_success (since Linux 2.6.35)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 htlb_buddy_alloc_success (since Linux 2.6.26) Page 104/106

 htlb_buddy_alloc_fail (since Linux 2.6.26)

 unevictable_pgs_culled (since Linux 2.6.28)

 unevictable_pgs_scanned (since Linux 2.6.28)

 unevictable_pgs_rescued (since Linux 2.6.28)

 unevictable_pgs_mlocked (since Linux 2.6.28)

 unevictable_pgs_munlocked (since Linux 2.6.28)

 unevictable_pgs_cleared (since Linux 2.6.28)

 unevictable_pgs_stranded (since Linux 2.6.28)

 thp_fault_alloc (since Linux 2.6.39)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_fault_fallback (since Linux 2.6.39)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_collapse_alloc (since Linux 2.6.39)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_collapse_alloc_failed (since Linux 2.6.39)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_split (since Linux 2.6.39)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_zero_page_alloc (since Linux 3.8)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 thp_zero_page_alloc_failed (since Linux 3.8)

 See the kernel source file Documentation/ad?

 min-guide/mm/transhuge.rst.

 balloon_inflate (since Linux 3.18)

 balloon_deflate (since Linux 3.18)

 balloon_migrate (since Linux 3.18)

 nr_tlb_remote_flush (since Linux 3.12) Page 105/106

 nr_tlb_remote_flush_received (since Linux 3.12)

 nr_tlb_local_flush_all (since Linux 3.12)

 nr_tlb_local_flush_one (since Linux 3.12)

 vmacache_find_calls (since Linux 3.16)

 vmacache_find_hits (since Linux 3.16)

 vmacache_full_flushes (since Linux 3.19)

 /proc/zoneinfo (since Linux 2.6.13)

 This file displays information about memory zones. This is use?

 ful for analyzing virtual memory behavior.

NOTES

 Many files contain strings (e.g., the environment and command line)

 that are in the internal format, with subfields terminated by null

 bytes ('\0'). When inspecting such files, you may find that the re?

 sults are more readable if you use a command of the following form to

 display them:

 $ cat file | tr '\000' '\n'

 This manual page is incomplete, possibly inaccurate, and is the kind of

 thing that needs to be updated very often.

SEE ALSO

 cat(1), dmesg(1), find(1), free(1), htop(1), init(1), ps(1), pstree(1),

 tr(1), uptime(1), chroot(2), mmap(2), readlink(2), syslog(2),

 slabinfo(5), sysfs(5), hier(7), namespaces(7), time(7), arp(8), hd?

 parm(8), ifconfig(8), lsmod(8), lspci(8), mount(8), netstat(8),

 procinfo(8), route(8), sysctl(8)

 The Linux kernel source files: Documentation/filesystems/proc.txt, Doc?

 umentation/sysctl/fs.txt, Documentation/sysctl/kernel.txt, Documenta?

 tion/sysctl/net.txt, and Documentation/sysctl/vm.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 PROC(5) Page 106/106

