
Rocky Enterprise Linux 9.2 Manual Pages on command 'powf.3'

$ man powf.3

POW(3) Linux Programmer's Manual POW(3)

NAME

 pow, powf, powl - power functions

SYNOPSIS

 #include <math.h>

 double pow(double x, double y);

 float powf(float x, float y);

 long double powl(long double x, long double y);

 Link with -lm.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 powf(), powl():

 _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 These functions return the value of x raised to the power of y.

RETURN VALUE

 On success, these functions return the value of x to the power of y. Page 1/4

 If x is a finite value less than 0, and y is a finite noninteger, a do?

 main error occurs, and a NaN is returned.

 If the result overflows, a range error occurs, and the functions return

 HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the mathemati?

 cally correct sign.

 If result underflows, and is not representable, a range error occurs,

 and 0.0 is returned.

 Except as specified below, if x or y is a NaN, the result is a NaN.

 If x is +1, the result is 1.0 (even if y is a NaN).

 If y is 0, the result is 1.0 (even if x is a NaN).

 If x is +0 (-0), and y is an odd integer greater than 0, the result is

 +0 (-0).

 If x is 0, and y greater than 0 and not an odd integer, the result is

 +0.

 If x is -1, and y is positive infinity or negative infinity, the result

 is 1.0.

 If the absolute value of x is less than 1, and y is negative infinity,

 the result is positive infinity.

 If the absolute value of x is greater than 1, and y is negative infin?

 ity, the result is +0.

 If the absolute value of x is less than 1, and y is positive infinity,

 the result is +0.

 If the absolute value of x is greater than 1, and y is positive infin?

 ity, the result is positive infinity.

 If x is negative infinity, and y is an odd integer less than 0, the re?

 sult is -0.

 If x is negative infinity, and y less than 0 and not an odd integer,

 the result is +0.

 If x is negative infinity, and y is an odd integer greater than 0, the

 result is negative infinity.

 If x is negative infinity, and y greater than 0 and not an odd integer,

 the result is positive infinity.

 If x is positive infinity, and y less than 0, the result is +0. Page 2/4

 If x is positive infinity, and y greater than 0, the result is positive

 infinity.

 If x is +0 or -0, and y is an odd integer less than 0, a pole error oc?

 curs and HUGE_VAL, HUGE_VALF, or HUGE_VALL, is returned, with the same

 sign as x.

 If x is +0 or -0, and y is less than 0 and not an odd integer, a pole

 error occurs and +HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.

ERRORS

 See math_error(7) for information on how to determine whether an error

 has occurred when calling these functions.

 The following errors can occur:

 Domain error: x is negative, and y is a finite noninteger

 errno is set to EDOM. An invalid floating-point exception

 (FE_INVALID) is raised.

 Pole error: x is zero, and y is negative

 errno is set to ERANGE (but see BUGS). A divide-by-zero float?

 ing-point exception (FE_DIVBYZERO) is raised.

 Range error: the result overflows

 errno is set to ERANGE. An overflow floating-point exception

 (FE_OVERFLOW) is raised.

 Range error: the result underflows

 errno is set to ERANGE. An underflow floating-point exception

 (FE_UNDERFLOW) is raised.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?pow(), powf(), powl() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 C99, POSIX.1-2001, POSIX.1-2008. Page 3/4

 The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS

 Historical bugs (now fixed)

 Before glibc 2.28, on some architectures (e.g., x86-64) pow() may be

 more than 10,000 times slower for some inputs than for other nearby in?

 puts. This affects only pow(), and not powf() nor powl(). This prob?

 lem was fixed in glibc 2.28.

 A number of bugs in the glibc implementation of pow() were fixed in

 glibc version 2.16.

 In glibc 2.9 and earlier, when a pole error occurs, errno is set to

 EDOM instead of the POSIX-mandated ERANGE. Since version 2.10, glibc

 does the right thing.

 In version 2.3.2 and earlier, when an overflow or underflow error oc?

 curs, glibc's pow() generates a bogus invalid floating-point exception

 (FE_INVALID) in addition to the overflow or underflow exception.

SEE ALSO

 cbrt(3), cpow(3), sqrt(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-06-09 POW(3)

Page 4/4

