
Rocky Enterprise Linux 9.2 Manual Pages on command 'polkit.8'

$ man polkit.8

POLKIT(8) polkit POLKIT(8)

NAME

 polkit - Authorization Manager

OVERVIEW

 polkit provides an authorization API intended to be used by privileged

 programs (?MECHANISMS?) offering service to unprivileged programs

 (?SUBJECTS?) often through some form of inter-process communication

 mechanism. In this scenario, the mechanism typically treats the subject

 as untrusted. For every request from a subject, the mechanism needs to

 determine if the request is authorized or if it should refuse to

 service the subject. Using the polkit APIs, a mechanism can offload

 this decision to a trusted party: The polkit authority.

 The polkit authority is implemented as an system daemon, polkitd(8),

 which itself has little privilege as it is running as the polkitd

 system user. Mechanisms, subjects and authentication agents communicate

 with the authority using the system message bus.

 In addition to acting as an authority, polkit allows users to obtain

 temporary authorization through authenticating either an administrative Page 1/15

 user or the owner of the session the client belongs to. This is useful

 for scenarios where a mechanism needs to verify that the operator of

 the system really is the user or really is an administrative user.

SYSTEM ARCHITECTURE

 The system architecture of polkit is comprised of the Authority

 (implemented as a service on the system message bus) and an

 Authentication Agent per user session (provided and started by the

 user's graphical environment). Actions are defined by applications.

 Vendors, sites and system administrators can control authorization

 policy through Authorization Rules.

 [IMAGE][1]

 +-------------------+

 | Authentication |

 | Agent |

 +-------------------+

 | libpolkit-agent-1 |

 +-------------------+

 ^ +---------+

 | | Subject |

 +--------------+ +---------+

 | ^

 | |

 User Session | |

 =======================|========================|=============

 System Context | |

 | |

 | +---+

 V |

 /------------\ |

 | System Bus | |

 \------------/ |

 ^ ^ V

 | | +---------------------+ Page 2/15

 +--------------+ | | Mechanism |

 | | +---------------------+

 V +----> | libpolkit-gobject-1 |

 +------------------+ +---------------------+

 | polkitd(8) |

 +------------------+

 | org.freedesktop. |

 | PolicyKit1 |<---------+

 +------------------+ |

 ^ |

 | +--------------------------------------+

 | | /usr/share/polkit-1/actions/*.policy |

 | +--------------------------------------+

 |

 +--------------------------------------+

 | /etc/polkit-1/rules.d/*.rules |

 | /usr/share/polkit-1/rules.d/*.rules |

 +--------------------------------------+

 For convenience, the libpolkit-gobject-1 library wraps the polkit D-Bus

 API and is usable from any C/C++ program as well as higher-level

 languages supporting GObjectIntrospection[2] such as Javascript and

 Python. A mechanism can also use the D-Bus API or the pkcheck(1)

 command to check authorizations. The libpolkit-agent-1 library provides

 an abstraction of the native authentication system, e.g. pam(8) and

 also facilities registration and communication with the polkit D-Bus

 service.

 See the developer documentation[3] for more information about writing

 polkit applications.

AUTHENTICATION AGENTS

 An authentication agent is used to make the user of a session prove

 that the user of the session really is the user (by authenticating as

 the user) or an administrative user (by authenticating as a

 administrator). In order to integrate well with the rest of the user Page 3/15

 session (e.g. match the look and feel), authentication agents are meant

 to be provided by the user session that the user uses. For example, an

 authentication agent may look like this:

 [IMAGE][4]

 +--+

 | |

 | [Icon] Authentication required |

 | |

 | Authentication is required to format INTEL |

 | SSDSA2MH080G1GC (/dev/sda) |

 | |

 | Administrator |

 | |

 | Password: [__________________________________] |

 | |

 | [Cancel] [Authenticate] |

 +--+

 If the system is configured without a root account it may prompt for a

 specific user designated as the administrative user:

 [IMAGE][5]

 +--+

 | |

 | [Icon] Authentication required |

 | |

 | Authentication is required to format INTEL |

 | SSDSA2MH080G1GC (/dev/sda) |

 | |

 | [Icon] David Zeuthen |

 | |

 | Password: [__________________________________] |

 | |

 | [Cancel] [Authenticate] |

 +--+ Page 4/15

 Applications that do not run under a desktop environment (for example,

 if launched from a ssh(1) login) may not have have an authentication

 agent associated with them. Such applications may use the

 PolkitAgentTextListener type or the pkttyagent(1) helper so the user

 can authenticate using a textual interface.

DECLARING ACTIONS

 A mechanism need to declare a set of actions in order to use polkit.

 Actions correspond to operations that clients can request the mechanism

 to carry out and are defined in XML files that the mechanism installs

 into the /usr/share/polkit-1/actions directory.

 polkit actions are namespaced and can only contain the characters

 [A-Z][a-z][0-9].- e.g. ASCII, digits, period and hyphen. Each XML file

 can contain more than one action but all actions need to be in the same

 namespace and the file needs to be named after the namespace and have

 the extension .policy.

 The XML file must have the following doctype declaration

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE policyconfig PUBLIC "-//freedesktop//DTD polkit Policy Configuration 1.0//EN"

 "http://www.freedesktop.org/software/polkit/policyconfig-1.dtd">

 The policyconfig element must be present exactly once. Elements that

 can be used inside policyconfig includes:

 vendor

 The name of the project or vendor that is supplying the actions in

 the XML document. Optional.

 vendor_url

 A URL to the project or vendor that is supplying the actions in the

 XML document. Optional.

 icon_name

 An icon representing the project or vendor that is supplying the

 actions in the XML document. The icon name must adhere to the

 Freedesktop.org Icon Naming Specification[6]. Optional.

 action

 Declares an action. The action name is specified using the id Page 5/15

 attribute and can only contain the characters [A-Z][a-z][0-9].-

 e.g. ASCII, digits, period and hyphen.

 Elements that can be used inside action include:

 description

 A human readable description of the action, e.g. ?Install unsigned

 software?.

 message

 A human readable message displayed to the user when asking for

 credentials when authentication is needed, e.g. ?Installing

 unsigned software requires authentication?.

 defaults

 This element is used to specify implicit authorizations for

 clients. Elements that can be used inside defaults include:

 allow_any

 Implicit authorizations that apply to any client. Optional.

 allow_inactive

 Implicit authorizations that apply to clients in inactive

 sessions on local consoles. Optional.

 allow_active

 Implicit authorizations that apply to clients in active

 sessions on local consoles. Optional.

 Each of the allow_any, allow_inactive and allow_active elements can

 contain the following values:

 no

 Not authorized.

 yes

 Authorized.

 auth_self

 Authentication by the owner of the session that the client

 originates from is required. Note that this is not restrictive

 enough for most uses on multi-user systems; auth_admin* is

 generally recommended.

 auth_admin Page 6/15

 Authentication by an administrative user is required.

 auth_self_keep

 Like auth_self but the authorization is kept for a brief period

 (e.g. five minutes). The warning about auth_self above applies

 likewise.

 auth_admin_keep

 Like auth_admin but the authorization is kept for a brief

 period (e.g. five minutes).

 annotate

 Used for annotating an action with a key/value pair. The key is

 specified using the the key attribute and the value is specified

 using the value attribute. This element may appear zero or more

 times. See below for known annotations.

 vendor

 Used for overriding the vendor on a per-action basis. Optional.

 vendor_url

 Used for overriding the vendor URL on a per-action basis. Optional.

 icon_name

 Used for overriding the icon name on a per-action basis. Optional.

 For localization, description and message elements may occur multiple

 times with different xml:lang attributes.

 To list installed polkit actions, use the pkaction(1) command.

 Known annotations

 The org.freedesktop.policykit.exec.path annotation is used by the

 pkexec program shipped with polkit - see the pkexec(1) man page for

 details.

 The org.freedesktop.policykit.imply annotation (its value is a string

 containing a space separated list of action identifiers) can be used to

 define meta actions. The way it works is that if a subject is

 authorized for an action with this annotation, then it is also

 authorized for any action specified by the annotation. A typical use of

 this annotation is when defining an UI shell with a single lock button

 that should unlock multiple actions from distinct mechanisms. Page 7/15

 The org.freedesktop.policykit.owner annotation can be used to define a

 set of users who can query whether a client is authorized to perform

 this action. If this annotation is not specified then only root can

 query whether a client running as a different user is authorized for an

 action. The value of this annotation is a string containing a space

 separated list of PolkitIdentity entries, for example "unix-user:42

 unix-user:colord". A typical use of this annotation is for a daemon

 process that runs as a system user rather than root.

AUTHORIZATION RULES

 polkitd reads .rules files from the /etc/polkit-1/rules.d and

 /usr/share/polkit-1/rules.d directories by sorting the files in lexical

 order based on the basename on each file (if there's a tie, files in

 /etc are processed before files in /usr). For example, for the

 following four files, the order is

 ? /etc/polkit-1/rules.d/10-auth.rules

 ? /usr/share/polkit-1/rules.d/10-auth.rules

 ? /etc/polkit-1/rules.d/15-auth.rules

 ? /usr/share/polkit-1/rules.d/20-auth.rules

 Both directories are monitored so if a rules file is changed, added or

 removed, existing rules are purged and all files are read and processed

 again. Rules files are written in the JavaScript[7] programming

 language and interface with polkitd through the global polkit object

 (of type Polkit).

 While the JavaScript interpreter used in particular versions of polkit

 may support non-standard features (such as the let keyword),

 authorization rules must conform to ECMA-262 edition 5[8] (in other

 words, the JavaScript interpreter used may change in future versions of

 polkit).

 Authorization rules are intended for two specific audiences

 ? System Administrators

 ? Special-purpose Operating Systems / Environments

 and those audiences only. In particular, applications, mechanisms and

 general-purpose operating systems must never include any authorization Page 8/15

 rules.

 The Polkit type

 The following methods are available on the polkit object:

 void addRule(polkit.Result function(action, subject) {...});

 void addAdminRule(string[] function(action, subject) {...});

 void log(string message);

 string spawn(string[] argv);

 The addRule() method is used for adding a function that may be called

 whenever an authorization check for action and subject is performed.

 Functions are called in the order they have been added until one of the

 functions returns a value. Hence, to add an authorization rule that is

 processed before other rules, put it in a file in /etc/polkit-1/rules.d

 with a name that sorts before other rules files, for example

 00-early-checks.rules. Each function should return a value from

 polkit.Result

 polkit.Result = {

 NO : "no",

 YES : "yes",

 AUTH_SELF : "auth_self",

 AUTH_SELF_KEEP : "auth_self_keep",

 AUTH_ADMIN : "auth_admin",

 AUTH_ADMIN_KEEP : "auth_admin_keep",

 NOT_HANDLED : null

 };

 corresponding to the values that can be used as defaults. If the

 function returns polkit.Result.NOT_HANDLED, null, undefined or does not

 return a value at all, the next user function is tried.

 Keep in mind that if polkit.Result.AUTH_SELF_KEEP or

 polkit.Result.AUTH_ADMIN_KEEP is returned, authorization checks for the

 same action identifier and subject will succeed (that is, return

 polkit.Result.YES) for the next brief period (e.g. five minutes) even

 if the variables passed along with the check are different. Therefore,

 if the result of an authorization rule depend on such variables, it Page 9/15

 should not use the "*_KEEP" constants (if similar functionality is

 required, the authorization rule can easily implement temporary

 authorizations using the Date[9] type for timestamps).

 The addAdminRule() method is used for adding a function may be called

 whenever administrator authentication is required. The function is used

 to specify what identies may be used for administrator authentication

 for the authorization check identified by action and subject. Functions

 added are called in the order they have been added until one of the

 functions returns a value. Each function should return an array of

 strings where each string is of the form "unix-group:<group>",

 "unix-netgroup:<netgroup>" or "unix-user:<user>". If the function

 returns null, undefined or does not return a value at all, the next

 function is tried.

 There is no guarantee that a function registered with addRule() or

 addAdminRule() is ever called - for example an early rules file could

 register a function that always return a value, hence ensuring that

 functions added later are never called.

 If user-provided code takes a long time to execute an exception will be

 thrown which normally results in the function being terminated (the

 current limit is 15 seconds). This is used to catch runaway scripts.

 The spawn() method spawns an external helper identified by the argument

 vector argv and waits for it to terminate. If an error occurs or the

 helper doesn't exit normally with exit code 0, an exception is thrown.

 If the helper does not exit within 10 seconds it is killed. Otherwise,

 the program's standard output is returned as a string. The spawn()

 method should be used sparingly as helpers may take a very long or

 indeterminate amount of time to complete and no other authorization

 check can be handled while the helper is running. Note that the spawned

 programs will run as the unprivileged polkitd system user.

 The log() method writes the given message to the system logger prefixed

 with the JavaScript filename and line number. Log entries are emitted

 using the LOG_AUTHPRIV flag meaning that the log entries usually ends

 up in the file /var/log/secure. The log() method is usually only used Page 10/15

 when debugging rules. The Action and Subject types has suitable

 toString() methods defined for easy logging, for example,

 polkit.addRule(function(action, subject) {

 if (action.id == "org.freedesktop.policykit.exec") {

 polkit.log("action=" + action);

 polkit.log("subject=" + subject);

 }

 });

 will produce the following when the user runs 'pkexec -u bateman bash

 -i' from a shell:

 May 24 14:28:50 thinkpad polkitd[32217]: /etc/polkit-1/rules.d/10-test.rules:3: action=[Action

id='org.freedesktop.policykit.exec' command_line='/usr/bin/bash -i' program='/usr/bin/bash' user='bateman'

user.gecos='Patrick Bateman' user.display='Patrick Bateman (bateman)']

 May 24 14:28:50 thinkpad polkitd[32217]: /etc/polkit-1/rules.d/10-test.rules:4: subject=[Subject pid=1352

user='davidz' groups=davidz,wheel, seat='seat0' session='1' local=true active=true]

 The Action type

 The action parameter passed to user functions is an object with

 information about the action being checked. It is of type Action and

 has the following attribute:

 string id

 The action identifier, for example org.freedesktop.policykit.exec.

 The following methods are available on the Action type:

 string lookup(string key);

 The lookup() method is used to lookup the polkit variables passed from

 the mechanism. For example, the pkexec(1) mechanism sets the variable

 program which can be obtained in Javascript using the expression

 action.lookup("program"). If there is no value for the given key, then

 undefined is returned.

 Consult the documentation for each mechanism for what variables are

 available for each action.

 The Subject type

 The subject parameter passed to user functions is an object with

 information about the process being checked. It is of type Subject and Page 11/15

 has the following attributes

 int pid

 The process id.

 string user

 The user name.

 string[] groups

 Array of groups that user user belongs to.

 string seat

 The seat that the subject is associated with - blank if not on a

 local seat.

 string session

 The session that the subject is associated with.

 boolean local

 Set to true only if seat is local.

 boolean active

 Set to true only if the session is active.

 The following methods are available on the Subject type:

 boolean isInGroup(string groupName);

 boolean isInNetGroup(string netGroupName);

 The isInGroup() method can be used to check if the subject is in a

 given group and isInNetGroup() can be used to check if the subject is

 in a given netgroup.

 Authorization Rules Examples

 Allow all users in the admin group to perform user administration

 without changing policy for other users:

 polkit.addRule(function(action, subject) {

 if (action.id == "org.freedesktop.accounts.user-administration" &&

 subject.isInGroup("admin")) {

 return polkit.Result.YES;

 }

 });

 Define administrative users to be the users in the wheel group:

 polkit.addAdminRule(function(action, subject) { Page 12/15

 return ["unix-group:wheel"];

 });

 Forbid users in group children to change hostname configuration (that

 is, any action with an identifier starting with

 org.freedesktop.hostname1.) and allow anyone else to do it after

 authenticating as themselves:

 polkit.addRule(function(action, subject) {

 if (action.id.indexOf("org.freedesktop.hostname1.") == 0) {

 if (subject.isInGroup("children")) {

 return polkit.Result.NO;

 } else {

 return polkit.Result.AUTH_SELF_KEEP;

 }

 }

 });

 Run an external helper to determine if the current user may reboot the

 system:

 polkit.addRule(function(action, subject) {

 if (action.id.indexOf("org.freedesktop.login1.reboot") == 0) {

 try {

 // user-may-reboot exits with success (exit code 0)

 // only if the passed username is authorized

 polkit.spawn(["/opt/company/bin/user-may-reboot",

 subject.user]);

 return polkit.Result.YES;

 } catch (error) {

 // Nope, but do allow admin authentication

 return polkit.Result.AUTH_ADMIN;

 }

 }

 });

 The following example shows how the authorization decision can depend

 on variables passed by the pkexec(1) mechanism: Page 13/15

 polkit.addRule(function(action, subject) {

 if (action.id == "org.freedesktop.policykit.exec" &&

 action.lookup("program") == "/usr/bin/cat") {

 return polkit.Result.AUTH_ADMIN;

 }

 });

 The following example shows another use of variables passed from the

 mechanism. In this case, the mechanism is UDisks[10] which defines a

 set of actions and variables[11] that is used to match on:

 // Allow users in group 'engineers' to perform any operation on

 // some drives without having to authenticate

 //

 polkit.addRule(function(action, subject) {

 if (action.id.indexOf("org.freedesktop.udisks2.") == 0 &&

 action.lookup("drive.vendor") == "SEAGATE" &&

 action.lookup("drive.model") == "ST3300657SS" &&

 subject.isInGroup("engineers")) {

 return polkit.Result.YES;

 }

 }

 });

AUTHOR

 Written by David Zeuthen <davidz@redhat.com> with a lot of help from

 many others.

BUGS

 Please send bug reports to either the distribution or the polkit-devel

 mailing list, see the link

 http://lists.freedesktop.org/mailman/listinfo/polkit-devel on how to

 subscribe.

SEE ALSO

 polkitd(8), pkaction(1), pkcheck(1), pkexec(1), pkttyagent(1)

NOTES

 1. /usr/share/gtk-doc/html/polkit-1/polkit-architecture.png Page 14/15

 2. GObjectIntrospection

 https://live.gnome.org/GObjectIntrospection

 3. developer documentation

 http://www.freedesktop.org/software/polkit/docs/latest/

 4. /usr/share/gtk-doc/html/polkit-1/polkit-authentication-agent-

 example.png

 5. /usr/share/gtk-doc/html/polkit-1/polkit-authentication-agent-

 example-wheel.png

 6. Freedesktop.org Icon Naming Specification

 http://standards.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html

 7. JavaScript

 http://en.wikipedia.org/wiki/JavaScript

 8. ECMA-262 edition 5

 http://en.wikipedia.org/wiki/ECMAScript#ECMAScript.2C_5th_Edition

 9. Date

 https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date

 10. UDisks

 http://udisks.freedesktop.org/docs/latest/udisks.8.html

 11. actions and variables

 http://udisks.freedesktop.org/docs/latest/udisks-polkit-actions.html

polkit January 2009 POLKIT(8)

Page 15/15

