
Rocky Enterprise Linux 9.2 Manual Pages on command 'podman-generate-systemd.1'

$ man podman-generate-systemd.1

podman-generate-systemd(1) General Commands Manual podman-generate-systemd(1)

NAME

 podman-generate-systemd - Generate systemd unit file(s) for a container

 or pod

SYNOPSIS

 podman generate systemd [options] container|pod

DESCRIPTION

 podman generate systemd will create a systemd unit file that can be

 used to control a container or pod. By default, the command will print

 the content of the unit files to stdout.

 Generating unit files for a pod requires the pod to be created with an

 infra container (see --infra=true). An infra container runs across the

 entire lifespan of a pod and is hence required for systemd to manage

 the life cycle of the pod's main unit.

 ? Note: When using this command with the remote client, includ?

 ing Mac and Windows (excluding WSL2) machines, place the gen?

 erated units on the remote system. Moreover, make sure that

 the XDG_RUNTIME_DIR environment variable is set. If unset, Page 1/10

 set it via export XDG_RUNTIME_DIR=/run/user/$(id -u)._

 ? Note: The generated podman run command contains an --sdnotify

 option with the value taken from the container. If the con?

 tainer does not have any explicitly set value or the value is

 set to ignore, the value conmon is used. The reason for over?

 riding the default value container is that almost no container

 workloads send notify messages. Systemd would wait for a

 ready message that never comes, if the value container is used

 for a container that does not send notify messages. The use of

 the default value might have been unintentional by the user,

 therefore the overridden default value._

 Kubernetes Integration

 A Kubernetes YAML can be executed in systemd via the podman-kube@.ser?

 vice systemd template. The template's argument is the path to the YAML

 file. Given a workload.yaml file in the home directory, it can be exe?

 cuted as follows:

 $ escaped=$(systemd-escape ~/workload.yaml)

 $ systemctl --user start podman-kube@$escaped.service

 $ systemctl --user is-active podman-kube@$escaped.service

 active

OPTIONS

 --after=dependency_name

 Add the systemd unit after (After=) option, that ordering dependencies

 between the list of dependencies and this service. This option may be

 specified more than once.

 User-defined dependencies will be appended to the generated unit file,

 but any existing options such as needed or defined by default (e.g. on?

 line.target) will not be removed or overridden.

 --container-prefix=prefix

 Set the systemd unit name prefix for containers. The default is con?

 tainer.

 --env, -e=env

 Set environment variables to the systemd unit files. Page 2/10

 If an environment variable is specified without a value, Podman will

 check the host environment for a value and set the variable only if it

 is set on the host. As a special case, if an environment variable end?

 ing in * is specified without a value, Podman will search the host en?

 vironment for variables starting with the prefix and will add those

 variables to the systemd unit files.

 --files, -f

 Generate files instead of printing to stdout. The generated files are

 named {container,pod}-{ID,name}.service and will be placed in the cur?

 rent working directory.

 Note: On a system with SELinux enabled, the generated files will in?

 herit contexts from the current working directory. Depending on the

 SELinux setup, changes to the generated files using restorecon, chcon,

 or semanage may be required to allow systemd to access these files. Al?

 ternatively, use the -Z option when running mv or cp.

 --format=format

 Print the created units in specified format (json). If --files is spec?

 ified the paths to the created files will be printed instead of the

 unit content.

 --name, -n

 Use the name of the container for the start, stop, and description in

 the unit file

 --new

 Using this flag will yield unit files that do not expect containers and

 pods to exist. Instead, new containers and pods are created based on

 their configuration files. The unit files are created best effort and

 may need to be further edited; please review the generated files care?

 fully before using them in production.

 Note that --new only works on containers and pods created directly via

 Podman (i.e., podman [container] {create,run} or podman pod create).

 It does not work on containers or pods created via the REST API or via

 podman kube play. For podman kube play, please use the podman-

 kube@.service systemd template instead. Page 3/10

 --no-header

 Do not generate the header including meta data such as the Podman ver?

 sion and the timestamp.

 --pod-prefix=prefix

 Set the systemd unit name prefix for pods. The default is pod.

 --requires=dependency_name

 Set the systemd unit requires (Requires=) option. Similar to wants, but

 declares a stronger requirement dependency.

 --restart-policy=policy

 Set the systemd restart policy. The restart-policy must be one of:

 "no", "on-success", "on-failure", "on-abnormal", "on-watchdog", "on-

 abort", or "always". The default policy is on-failure unless the con?

 tainer was created with a custom restart policy.

 Note that generating a unit without --new on a container with a custom

 restart policy can lead to issues on shutdown; systemd will attempt to

 stop the unit while Podman tries to restart it. It is recommended to

 to create the container without --restart and use the --restart-policy

 option instead when generating the unit file.

 --restart-sec=time

 Set the systemd service restartsec value. Configures the time to sleep

 before restarting a service (as configured with restart-policy). Takes

 a value in seconds.

 --separator=separator

 Set the systemd unit name separator between the name/id of a con?

 tainer/pod and the prefix. The default is -.

 --start-timeout=value

 Override the default start timeout for the container with the given

 value in seconds.

 --stop-timeout=value

 Override the default stop timeout for the container with the given

 value in seconds.

 --template

 Add template specifiers to run multiple services from the systemd unit Page 4/10

 file.

 Note that if --new was not set to true, it is set to true by default.

 However, if --new is set to false explicitly the command will fail.

 --wants=dependency_name

 Add the systemd unit wants (Wants=) option, that this service is (weak)

 dependent on. This option may be specified more than once. This option

 does not influence the order in which services are started or stopped.

 User-defined dependencies will be appended to the generated unit file,

 but any existing options such as needed or defined by default (e.g. on?

 line.target) will not be removed or overridden.

EXAMPLES

 Generate and print a systemd unit file for a container

 Generate a systemd unit file for a container running nginx with an al?

 ways restart policy and 1-second timeout to stdout. Note that the Re?

 quiresMountsFor option in the Unit section ensures that the container

 storage for both the GraphRoot and the RunRoot are mounted prior to

 starting the service. For systems with container storage on disks like

 iSCSI or other remote block protocols, this ensures that Podman is not

 executed prior to any necessary storage operations coming online.

 $ podman create --name nginx nginx:latest

 $ podman generate systemd --restart-policy=always -t 1 nginx

 # container-de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6.service

 # autogenerated by Podman 1.8.0

 # Wed Mar 09 09:46:45 CEST 2020

 [Unit]

 Description=Podman

container-de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6.service

 Documentation=man:podman-generate-systemd(1)

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Restart=always Page 5/10

 ExecStart=/usr/bin/podman start de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6

 ExecStop=/usr/bin/podman stop

 -t 1 de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6

 KillMode=none

 Type=forking

PIDFile=/run/user/1000/overlay-containers/de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6/u

serdata/conmon.pid

 [Install]

 WantedBy=default.target

 Generate systemd unit file for a container with --new flag

 The --new flag generates systemd unit files that create and remove con?

 tainers at service start and stop commands (see ExecStartPre and Exec?

 StopPost service actions). Such unit files are not tied to a single ma?

 chine and can easily be shared and used on other machines.

 $ sudo podman generate systemd --new --files --name bb310a0780ae

 # container-busy_moser.service

 # autogenerated by Podman 1.8.3

 # Fri Apr 3 09:40:47 EDT 2020

 [Unit]

 Description=Podman container-busy_moser.service

 Documentation=man:podman-generate-systemd(1)

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Environment=PODMAN_SYSTEMD_UNIT=%n

 Restart=on-failure

 ExecStartPre=/bin/rm -f %t/%n-pid %t/%n-cid

 ExecStart=/usr/local/bin/podman run

 --conmon-pidfile %t/%n-pid

 --cidfile %t/%n-cid

 --cgroups=no-conmon Page 6/10

 -d

 -dit alpine

 ExecStop=/usr/local/bin/podman stop

 --ignore

 --cidfile %t/%n-cid -t 10

 ExecStopPost=/usr/local/bin/podman rm

 --ignore

 -f

 --cidfile %t/%n-cid

 PIDFile=%t/%n-pid

 KillMode=none

 Type=forking

 [Install]

 WantedBy=default.target

 Generate systemd unit files for a pod with two simple alpine containers

 Note systemctl should only be used on the pod unit and one should not

 start or stop containers individually via systemctl, as they are man?

 aged by the pod service along with the internal infra-container.

 Use systemctl status or journalctl to examine container or pod unit

 files.

 $ podman pod create --name systemd-pod

 $ podman create --pod systemd-pod alpine top

 $ podman create --pod systemd-pod alpine top

 $ podman generate systemd --files --name systemd-pod

 /home/user/pod-systemd-pod.service

 /home/user/container-amazing_chandrasekhar.service

 /home/user/container-jolly_shtern.service

 $ cat pod-systemd-pod.service

 # pod-systemd-pod.service

 # autogenerated by Podman 1.8.0

 # Wed Mar 09 09:52:37 CEST 2020

 [Unit]

 Description=Podman pod-systemd-pod.service Page 7/10

 Documentation=man:podman-generate-systemd(1)

 Requires=container-amazing_chandrasekhar.service container-jolly_shtern.service

 Before=container-amazing_chandrasekhar.service container-jolly_shtern.service

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Restart=on-failure

 ExecStart=/usr/bin/podman start 77a818221650-infra

 ExecStop=/usr/bin/podman stop

 -t 10 77a818221650-infra

 KillMode=none

 Type=forking

PIDFile=/run/user/1000/overlay-containers/ccfd5c71a088768774ca7bd05888d55cc287698dde06f475c8b02f696a25adcd/us

erdata/conmon.pid

 [Install]

 WantedBy=default.target

 Installation of generated systemd unit files.

 Podman-generated unit files include an [Install] section, which carries

 installation information for the unit. It is used by the enable and

 disable commands of systemctl(1) during installation.

 Once the systemd unit file is generated, install it to /etc/sys?

 temd/system to be run by the root user or to $HOME/.config/systemd/user

 for installing it as a non-root user. Enable the copied unit file or

 files using systemctl enable.

 Note: Copying unit files to /etc/systemd/system and enabling it marks

 the unit file to be automatically started at boot. And similarly, copy?

 ing a unit file to $HOME/.config/systemd/user and enabling it marks the

 unit file to be automatically started on user login.

 # Generated systemd files.

 $ podman pod create --name systemd-pod

 $ podman create --pod systemd-pod alpine top Page 8/10

 $ podman generate systemd --files --name systemd-pod

 # Copy all the generated files.

 $ sudo cp pod-systemd-pod.service container-great_payne.service /etc/systemd/system

 $ systemctl enable pod-systemd-pod.service

 Created symlink /etc/systemd/system/multi-user.target.wants/pod-systemd-pod.service ?

/etc/systemd/system/pod-systemd-pod.service.

 Created symlink /etc/systemd/system/default.target.wants/pod-systemd-pod.service ?

/etc/systemd/system/pod-systemd-pod.service.

 $ systemctl is-enabled pod-systemd-pod.service

 enabled

 To run the user services placed in $HOME/.config/systemd/user on first

 login of that user, enable the service with --user flag.

 $ systemctl --user enable <.service>

 The systemd user instance is killed after the last session for the user

 is closed. The systemd user instance can be started at boot and kept

 running even after the user logs out by enabling lingering using

 $ loginctl enable-linger <username>

 Use systemctl to perform operations on generated installed unit files.

 Create and enable systemd unit files for a pod using the above examples

 as reference and use systemctl to perform operations.

 Since systemctl defaults to using the root user, all the changes using

 the systemctl can be seen by appending sudo to the podman cli commands.

 To perform systemctl actions as a non-root user use the --user flag

 when interacting with systemctl.

 Note: If the previously created containers or pods are using shared re?

 sources, such as ports, make sure to remove them before starting the

 generated systemd units.

 $ systemctl --user start pod-systemd-pod.service

 $ podman pod ps

 POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID

 0815c7b8e7f5 systemd-pod Running 29 minutes ago 2 6c5d116f4bbe

 $ sudo podman ps # 0 Number of pods on root.

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES Page 9/10

 $ systemctl stop pod-systemd-pod.service

 $ podman pod ps

 POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID

 272d2813c798 systemd-pod Exited 29 minutes ago 2 6c5d116f4bbe

 Create a simple alpine container and generate the systemd unit file

 with --new flag. Enable the service and control operations using the

 systemctl commands.

 Note: When starting the container using systemctl start rather than al?

 tering the already running container it spins up a "new" container with

 similar configuration.

 # Enable the service.

 $ sudo podman ps -a

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 bb310a0780ae docker.io/library/alpine:latest /bin/sh 2 minutes ago Created busy_moser

 $ sudo systemctl start container-busy_moser.service

 $ sudo podman ps -a

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 772df2f8cf3b docker.io/library/alpine:latest /bin/sh 1 second ago Up 1 second distracted_albattani

 bb310a0780ae docker.io/library/alpine:latest /bin/sh 3 minutes ago Created busy_moser

SEE ALSO

 podman(1), podman-container(1), systemctl(1), systemd.unit(5), sys?

 temd.service(5), conmon(8)

HISTORY

 April 2020, Updated details and added use case to use generated .ser?

 vice files as root and non-root, by Sujil Shah (sushah at redhat dot

 com)

 August 2019, Updated with pod support by Valentin Rothberg (rothberg at

 redhat dot com)

 April 2019, Originally compiled by Brent Baude (bbaude at redhat dot

 com)

 podman-generate-systemd(1)

Page 10/10

