
Rocky Enterprise Linux 9.2 Manual Pages on command 'podman-container-checkpoint.1'

$ man podman-container-checkpoint.1

podman-container-checkpoint(General Commands Manpodman-container-checkpoint(1)

NAME

 podman-container-checkpoint - Checkpoints one or more running contain?

 ers

SYNOPSIS

 podman container checkpoint [options] container [container ...]

DESCRIPTION

 podman container checkpoint checkpoints all the processes in one or

 more containers. A container can be restored from a checkpoint with

 podman-container-restore. The container IDs or names are used as input.

 IMPORTANT: If the container is using systemd as entrypoint checkpoint?

 ing the container might not be possible.

OPTIONS

 --all, -a

 Checkpoint all running containers.

 The default is false.

 IMPORTANT: This OPTION does not need a container name or ID as input

 argument. Page 1/6

 --compress, -c=zstd | none | gzip

 Specify the compression algorithm used for the checkpoint archive cre?

 ated with the --export, -e OPTION. Possible algorithms are zstd, none

 and gzip.

 One possible reason to use none is to enable faster creation of check?

 point archives. Not compressing the checkpoint archive can result in

 faster checkpoint archive creation.

 The default is zstd.

 --create-image=image

 Create a checkpoint image from a running container. This is a standard

 OCI image created in the local image store. It consists of a single

 layer that contains all of the checkpoint files. The content of this

 image layer is in the same format as a checkpoint created with --ex?

 port. A checkpoint image can be pushed to a standard container registry

 and pulled on a different system to enable container migration. In ad?

 dition, the image can be exported with podman image save and inspected

 with podman inspect. Inspecting a checkpoint image would display addi?

 tional information, stored as annotations, about the host environment

 used to do the checkpoint:

 ? io.podman.annotations.checkpoint.name: Human-readable name of

 the original container.

 ? io.podman.annotations.checkpoint.rawImageName: Unprocessed

 name of the image used to create the original container (as

 specified by the user).

 ? io.podman.annotations.checkpoint.rootfsImageID: ID of the im?

 age used to create the original container.

 ? io.podman.annotations.checkpoint.rootfsImageName: Image name

 used to create the original container.

 ? io.podman.annotations.checkpoint.podman.version: Version of

 Podman used to create the checkpoint.

 ? io.podman.annotations.checkpoint.criu.version: Version of CRIU

 used to create the checkpoint.

 ? io.podman.annotations.checkpoint.runtime.name: Container run? Page 2/6

 time (e.g., runc, crun) used to create the checkpoint.

 ? io.podman.annotations.checkpoint.runtime.version: Version of

 the container runtime used to create the checkpoint.

 ? io.podman.annotations.checkpoint.conmon.version: Version of

 conmon used with the original container.

 ? io.podman.annotations.checkpoint.host.arch: CPU architecture

 of the host on which the checkpoint was created.

 ? io.podman.annotations.checkpoint.host.kernel: Version of Linux

 kernel of the host where the checkpoint was created.

 ? io.podman.annotations.checkpoint.cgroups.version: cgroup ver?

 sion used by the host where the checkpoint was created.

 ? io.podman.annotations.checkpoint.distribution.version: Version

 of host distribution on which the checkpoint was created.

 ? io.podman.annotations.checkpoint.distribution.name: Name of

 host distribution on which the checkpoint was created.

 --export, -e=archive

 Export the checkpoint to a tar.gz file. The exported checkpoint can be

 used to import the container on another system and thus enabling con?

 tainer live migration. This checkpoint archive also includes all

 changes to the container's root file-system, if not explicitly disabled

 using --ignore-rootfs.

 --file-locks

 Checkpoint a container with file locks. If an application running in

 the container is using file locks, this OPTION is required during

 checkpoint and restore. Otherwise checkpointing containers with file

 locks is expected to fail. If file locks are not used, this option is

 ignored.

 The default is false.

 --ignore-rootfs

 If a checkpoint is exported to a tar.gz file it is possible with the

 help of --ignore-rootfs to explicitly disable including changes to the

 root file-system into the checkpoint archive file.

 The default is false. Page 3/6

 IMPORTANT: This OPTION only works in combination with --export, -e.

 --ignore-volumes

 This OPTION must be used in combination with the --export, -e OPTION.

 When this OPTION is specified, the content of volumes associated with

 the container will not be included into the checkpoint tar.gz file.

 The default is false.

 --keep, -k

 Keep all temporary log and statistics files created by CRIU during

 checkpointing. These files are not deleted if checkpointing fails for

 further debugging. If checkpointing succeeds these files are theoreti?

 cally not needed, but if these files are needed Podman can keep the

 files for further analysis.

 The default is false.

 --latest, -l

 Instead of providing the container ID or name, use the last created

 container. If other methods than Podman are used to run containers such

 as CRI-O, the last started container could be from either of those

 methods.

 The default is false.

 IMPORTANT: This OPTION is not available with the remote Podman client,

 including Mac and Windows (excluding WSL2) machines. This OPTION does

 not need a container name or ID as input argument.

 --leave-running, -R

 Leave the container running after checkpointing instead of stopping it.

 The default is false.

 --pre-checkpoint, -P

 Dump the container's memory information only, leaving the container

 running. Later operations will supersede prior dumps. It only works on

 runc 1.0-rc3 or higher.

 The default is false.

 The functionality to only checkpoint the memory of the container and in

 a second checkpoint only write out the memory pages which have changed

 since the first checkpoint relies on the Linux kernel's soft-dirty bit, Page 4/6

 which is not available on all systems as it depends on the system ar?

 chitecture and the configuration of the Linux kernel. Podman will ver?

 ify if the current system supports this functionality and return an er?

 ror if the current system does not support it.

 --print-stats

 Print out statistics about checkpointing the container(s). The output

 is rendered in a JSON array and contains information about how much

 time different checkpoint operations required. Many of the checkpoint

 statistics are created by CRIU and just passed through to Podman. The

 following information is provided in the JSON array:

 ? podman_checkpoint_duration: Overall time (in microseconds)

 needed to create all checkpoints.

 ? runtime_checkpoint_duration: Time (in microseconds) the con?

 tainer runtime needed to create the checkpoint.

 ? freezing_time: Time (in microseconds) CRIU needed to pause

 (freeze) all processes in the container (measured by CRIU).

 ? frozen_time: Time (in microseconds) all processes in the con?

 tainer were paused (measured by CRIU).

 ? memdump_time: Time (in microseconds) needed to extract all re?

 quired memory pages from all container processes (measured by

 CRIU).

 ? memwrite_time: Time (in microseconds) needed to write all re?

 quired memory pages to the corresponding checkpoint image

 files (measured by CRIU).

 ? pages_scanned: Number of memory pages scanned to determine if

 they need to be checkpointed (measured by CRIU).

 ? pages_written: Number of memory pages actually written to the

 checkpoint image files (measured by CRIU).

 The default is false.

 --tcp-established

 Checkpoint a container with established TCP connections. If the check?

 point image contains established TCP connections, this OPTION is re?

 quired during restore. Defaults to not checkpointing containers with Page 5/6

 established TCP connections.

 The default is false.

 --with-previous

 Check out the container with previous criu image files in pre-dump. It

 only works on runc 1.0-rc3 or higher.

 The default is false.

 IMPORTANT: This OPTION is not available with --pre-checkpoint.

 This option requires that the option --pre-checkpoint has been used be?

 fore on the same container. Without an existing pre-checkpoint, this

 option will fail.

 Also see --pre-checkpoint for additional information about --pre-check?

 point availability on different systems.

EXAMPLES

 Make a checkpoint for the container "mywebserver".

 # podman container checkpoint mywebserver

 Create a checkpoint image for the container "mywebserver".

 # podman container checkpoint --create-image mywebserver-checkpoint-1 mywebserver

 Dumps the container's memory information of the latest container into

 an archive.

 # podman container checkpoint -P -e pre-checkpoint.tar.gz -l

 Keep the container's memory information from an older dump and add the

 new container's memory information.

 # podman container checkpoint --with-previous -e checkpoint.tar.gz -l

 Dump the container's memory information of the latest container into an

 archive with the specified compress method.

 # podman container checkpoint -l --compress=none --export=dump.tar

 # podman container checkpoint -l --compress=gzip --export=dump.tar.gz

SEE ALSO

 podman(1), podman-container-restore(1), criu(8)

HISTORY

 September 2018, Originally compiled by Adrian Reber areber@redhat.com

 ?mailto:areber@redhat.com?

 podman-container-checkpoint(1) Page 6/6

