
Rocky Enterprise Linux 9.2 Manual Pages on command 'pivot_root.2'

$ man pivot_root.2

PIVOT_ROOT(2) Linux Programmer's Manual PIVOT_ROOT(2)

NAME

 pivot_root - change the root mount

SYNOPSIS

 int pivot_root(const char *new_root, const char *put_old);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 pivot_root() changes the root mount in the mount namespace of the call?

 ing process. More precisely, it moves the root mount to the directory

 put_old and makes new_root the new root mount. The calling process

 must have the CAP_SYS_ADMIN capability in the user namespace that owns

 the caller's mount namespace.

 pivot_root() changes the root directory and the current working direc?

 tory of each process or thread in the same mount namespace to new_root

 if they point to the old root directory. (See also NOTES.) On the

 other hand, pivot_root() does not change the caller's current working

 directory (unless it is on the old root directory), and thus it should

 be followed by a chdir("/") call. Page 1/8

 The following restrictions apply:

 - new_root and put_old must be directories.

 - new_root and put_old must not be on the same mount as the current

 root.

 - put_old must be at or underneath new_root; that is, adding some non?

 negative number of "/.." prefixes to the pathname pointed to by

 put_old must yield the same directory as new_root.

 - new_root must be a path to a mount point, but can't be "/". A path

 that is not already a mount point can be converted into one by bind

 mounting the path onto itself.

 - The propagation type of the parent mount of new_root and the parent

 mount of the current root directory must not be MS_SHARED; simi?

 larly, if put_old is an existing mount point, its propagation type

 must not be MS_SHARED. These restrictions ensure that pivot_root()

 never propagates any changes to another mount namespace.

 - The current root directory must be a mount point.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 pivot_root() may fail with any of the same errors as stat(2). Addi?

 tionally, it may fail with the following errors:

 EBUSY new_root or put_old is on the current root mount. (This error

 covers the pathological case where new_root is "/".)

 EINVAL new_root is not a mount point.

 EINVAL put_old is not at or underneath new_root.

 EINVAL The current root directory is not a mount point (because of an

 earlier chroot(2)).

 EINVAL The current root is on the rootfs (initial ramfs) mount; see

 NOTES.

 EINVAL Either the mount point at new_root, or the parent mount of that

 mount point, has propagation type MS_SHARED.

 EINVAL put_old is a mount point and has the propagation type MS_SHARED. Page 2/8

 ENOTDIR

 new_root or put_old is not a directory.

 EPERM The calling process does not have the CAP_SYS_ADMIN capability.

VERSIONS

 pivot_root() was introduced in Linux 2.3.41.

CONFORMING TO

 pivot_root() is Linux-specific and hence is not portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2).

 A command-line interface for this system call is provided by

 pivot_root(8).

 pivot_root() allows the caller to switch to a new root filesystem while

 at the same time placing the old root mount at a location under

 new_root from where it can subsequently be unmounted. (The fact that

 it moves all processes that have a root directory or current working

 directory on the old root directory to the new root frees the old root

 directory of users, allowing the old root mount to be unmounted more

 easily.)

 One use of pivot_root() is during system startup, when the system

 mounts a temporary root filesystem (e.g., an initrd(4)), then mounts

 the real root filesystem, and eventually turns the latter into the root

 directory of all relevant processes and threads. A modern use is to

 set up a root filesystem during the creation of a container.

 The fact that pivot_root() modifies process root and current working

 directories in the manner noted in DESCRIPTION is necessary in order to

 prevent kernel threads from keeping the old root mount busy with their

 root and current working directories, even if they never access the

 filesystem in any way.

 The rootfs (initial ramfs) cannot be pivot_root()ed. The recommended

 method of changing the root filesystem in this case is to delete every?

 thing in rootfs, overmount rootfs with the new root, attach stdin/std?

 out/stderr to the new /dev/console, and exec the new init(1). Helper Page 3/8

 programs for this process exist; see switch_root(8).

 pivot_root(".", ".")

 new_root and put_old may be the same directory. In particular, the

 following sequence allows a pivot-root operation without needing to

 create and remove a temporary directory:

 chdir(new_root);

 pivot_root(".", ".");

 umount2(".", MNT_DETACH);

 This sequence succeeds because the pivot_root() call stacks the old

 root mount point on top of the new root mount point at /. At that

 point, the calling process's root directory and current working direc?

 tory refer to the new root mount point (new_root). During the subse?

 quent umount() call, resolution of "." starts with new_root and then

 moves up the list of mounts stacked at /, with the result that old root

 mount point is unmounted.

 Historical notes

 For many years, this manual page carried the following text:

 pivot_root() may or may not change the current root and the cur?

 rent working directory of any processes or threads which use the

 old root directory. The caller of pivot_root() must ensure that

 processes with root or current working directory at the old root

 operate correctly in either case. An easy way to ensure this is

 to change their root and current working directory to new_root

 before invoking pivot_root().

 This text, written before the system call implementation was even fi?

 nalized in the kernel, was probably intended to warn users at that time

 that the implementation might change before final release. However,

 the behavior stated in DESCRIPTION has remained consistent since this

 system call was first implemented and will not change now.

EXAMPLES

 The program below demonstrates the use of pivot_root() inside a mount

 namespace that is created using clone(2). After pivoting to the root

 directory named in the program's first command-line argument, the child Page 4/8

 created by clone(2) then executes the program named in the remaining

 command-line arguments.

 We demonstrate the program by creating a directory that will serve as

 the new root filesystem and placing a copy of the (statically linked)

 busybox(1) executable in that directory.

 $ mkdir /tmp/rootfs

 $ ls -id /tmp/rootfs # Show inode number of new root directory

 319459 /tmp/rootfs

 $ cp $(which busybox) /tmp/rootfs

 $ PS1='bbsh$ ' sudo ./pivot_root_demo /tmp/rootfs /busybox sh

 bbsh$ PATH=/

 bbsh$ busybox ln busybox ln

 bbsh$ ln busybox echo

 bbsh$ ln busybox ls

 bbsh$ ls

 busybox echo ln ls

 bbsh$ ls -id / # Compare with inode number above

 319459 /

 bbsh$ echo 'hello world'

 hello world

 Program source

 /* pivot_root_demo.c */

 #define _GNU_SOURCE

 #include <sched.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/wait.h>

 #include <sys/syscall.h>

 #include <sys/mount.h>

 #include <sys/stat.h>

 #include <limits.h>

 #include <sys/mman.h> Page 5/8

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static int

 pivot_root(const char *new_root, const char *put_old)

 {

 return syscall(SYS_pivot_root, new_root, put_old);

 }

 #define STACK_SIZE (1024 * 1024)

 static int /* Startup function for cloned child */

 child(void *arg)

 {

 char **args = arg;

 char *new_root = args[0];

 const char *put_old = "/oldrootfs";

 char path[PATH_MAX];

 /* Ensure that 'new_root' and its parent mount don't have

 shared propagation (which would cause pivot_root() to

 return an error), and prevent propagation of mount

 events to the initial mount namespace */

 if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL) == -1)

 errExit("mount-MS_PRIVATE");

 /* Ensure that 'new_root' is a mount point */

 if (mount(new_root, new_root, NULL, MS_BIND, NULL) == -1)

 errExit("mount-MS_BIND");

 /* Create directory to which old root will be pivoted */

 snprintf(path, sizeof(path), "%s/%s", new_root, put_old);

 if (mkdir(path, 0777) == -1)

 errExit("mkdir");

 /* And pivot the root filesystem */

 if (pivot_root(new_root, path) == -1)

 errExit("pivot_root");

 /* Switch the current working directory to "/" */

 if (chdir("/") == -1) Page 6/8

 errExit("chdir");

 /* Unmount old root and remove mount point */

 if (umount2(put_old, MNT_DETACH) == -1)

 perror("umount2");

 if (rmdir(put_old) == -1)

 perror("rmdir");

 /* Execute the command specified in argv[1]... */

 execv(args[1], &args[1]);

 errExit("execv");

 }

 int

 main(int argc, char *argv[])

 {

 /* Create a child process in a new mount namespace */

 char *stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,

 MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

 if (stack == MAP_FAILED)

 errExit("mmap");

 if (clone(child, stack + STACK_SIZE,

 CLONE_NEWNS | SIGCHLD, &argv[1]) == -1)

 errExit("clone");

 /* Parent falls through to here; wait for child */

 if (wait(NULL) == -1)

 errExit("wait");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 chdir(2), chroot(2), mount(2), stat(2), initrd(4), mount_namespaces(7),

 pivot_root(8), switch_root(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 7/8

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 PIVOT_ROOT(2)

Page 8/8

