
Rocky Enterprise Linux 9.2 Manual Pages on command 'pipe.7'

$ man pipe.7

PIPE(7) Linux Programmer's Manual PIPE(7)

NAME

 pipe - overview of pipes and FIFOs

DESCRIPTION

 Pipes and FIFOs (also known as named pipes) provide a unidirectional

 interprocess communication channel. A pipe has a read end and a write

 end. Data written to the write end of a pipe can be read from the read

 end of the pipe.

 A pipe is created using pipe(2), which creates a new pipe and returns

 two file descriptors, one referring to the read end of the pipe, the

 other referring to the write end. Pipes can be used to create a commu?

 nication channel between related processes; see pipe(2) for an example.

 A FIFO (short for First In First Out) has a name within the filesystem

 (created using mkfifo(3)), and is opened using open(2). Any process

 may open a FIFO, assuming the file permissions allow it. The read end

 is opened using the O_RDONLY flag; the write end is opened using the

 O_WRONLY flag. See fifo(7) for further details. Note: although FIFOs

 have a pathname in the filesystem, I/O on FIFOs does not involve opera? Page 1/7

 tions on the underlying device (if there is one).

 I/O on pipes and FIFOs

 The only difference between pipes and FIFOs is the manner in which they

 are created and opened. Once these tasks have been accomplished, I/O

 on pipes and FIFOs has exactly the same semantics.

 If a process attempts to read from an empty pipe, then read(2) will

 block until data is available. If a process attempts to write to a

 full pipe (see below), then write(2) blocks until sufficient data has

 been read from the pipe to allow the write to complete. Nonblocking

 I/O is possible by using the fcntl(2) F_SETFL operation to enable the

 O_NONBLOCK open file status flag.

 The communication channel provided by a pipe is a byte stream: there is

 no concept of message boundaries.

 If all file descriptors referring to the write end of a pipe have been

 closed, then an attempt to read(2) from the pipe will see end-of-file

 (read(2) will return 0). If all file descriptors referring to the read

 end of a pipe have been closed, then a write(2) will cause a SIGPIPE

 signal to be generated for the calling process. If the calling process

 is ignoring this signal, then write(2) fails with the error EPIPE. An

 application that uses pipe(2) and fork(2) should use suitable close(2)

 calls to close unnecessary duplicate file descriptors; this ensures

 that end-of-file and SIGPIPE/EPIPE are delivered when appropriate.

 It is not possible to apply lseek(2) to a pipe.

 Pipe capacity

 A pipe has a limited capacity. If the pipe is full, then a write(2)

 will block or fail, depending on whether the O_NONBLOCK flag is set

 (see below). Different implementations have different limits for the

 pipe capacity. Applications should not rely on a particular capacity:

 an application should be designed so that a reading process consumes

 data as soon as it is available, so that a writing process does not re?

 main blocked.

 In Linux versions before 2.6.11, the capacity of a pipe was the same as

 the system page size (e.g., 4096 bytes on i386). Since Linux 2.6.11, Page 2/7

 the pipe capacity is 16 pages (i.e., 65,536 bytes in a system with a

 page size of 4096 bytes). Since Linux 2.6.35, the default pipe capac?

 ity is 16 pages, but the capacity can be queried and set using the fc?

 ntl(2) F_GETPIPE_SZ and F_SETPIPE_SZ operations. See fcntl(2) for more

 information.

 The following ioctl(2) operation, which can be applied to a file de?

 scriptor that refers to either end of a pipe, places a count of the

 number of unread bytes in the pipe in the int buffer pointed to by the

 final argument of the call:

 ioctl(fd, FIONREAD, &nbytes);

 The FIONREAD operation is not specified in any standard, but is pro?

 vided on many implementations.

 /proc files

 On Linux, the following files control how much memory can be used for

 pipes:

 /proc/sys/fs/pipe-max-pages (only in Linux 2.6.34)

 An upper limit, in pages, on the capacity that an unprivileged

 user (one without the CAP_SYS_RESOURCE capability) can set for a

 pipe.

 The default value for this limit is 16 times the default pipe

 capacity (see above); the lower limit is two pages.

 This interface was removed in Linux 2.6.35, in favor of

 /proc/sys/fs/pipe-max-size.

 /proc/sys/fs/pipe-max-size (since Linux 2.6.35)

 The maximum size (in bytes) of individual pipes that can be set

 by users without the CAP_SYS_RESOURCE capability. The value as?

 signed to this file may be rounded upward, to reflect the value

 actually employed for a convenient implementation. To determine

 the rounded-up value, display the contents of this file after

 assigning a value to it.

 The default value for this file is 1048576 (1 MiB). The minimum

 value that can be assigned to this file is the system page size.

 Attempts to set a limit less than the page size cause write(2) Page 3/7

 to fail with the error EINVAL.

 Since Linux 4.9, the value on this file also acts as a ceiling

 on the default capacity of a new pipe or newly opened FIFO.

 /proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)

 The hard limit on the total size (in pages) of all pipes created

 or set by a single unprivileged user (i.e., one with neither the

 CAP_SYS_RESOURCE nor the CAP_SYS_ADMIN capability). So long as

 the total number of pages allocated to pipe buffers for this

 user is at this limit, attempts to create new pipes will be de?

 nied, and attempts to increase a pipe's capacity will be denied.

 When the value of this limit is zero (which is the default), no

 hard limit is applied.

 /proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)

 The soft limit on the total size (in pages) of all pipes created

 or set by a single unprivileged user (i.e., one with neither the

 CAP_SYS_RESOURCE nor the CAP_SYS_ADMIN capability). So long as

 the total number of pages allocated to pipe buffers for this

 user is at this limit, individual pipes created by a user will

 be limited to one page, and attempts to increase a pipe's capac?

 ity will be denied.

 When the value of this limit is zero, no soft limit is applied.

 The default value for this file is 16384, which permits creating

 up to 1024 pipes with the default capacity.

 Before Linux 4.9, some bugs affected the handling of the pipe-user-

 pages-soft and pipe-user-pages-hard limits; see BUGS.

 PIPE_BUF

 POSIX.1 says that write(2)s of less than PIPE_BUF bytes must be atomic:

 the output data is written to the pipe as a contiguous sequence.

 Writes of more than PIPE_BUF bytes may be nonatomic: the kernel may in?

 terleave the data with data written by other processes. POSIX.1 re?

 quires PIPE_BUF to be at least 512 bytes. (On Linux, PIPE_BUF is 4096

 bytes.) The precise semantics depend on whether the file descriptor is

 nonblocking (O_NONBLOCK), whether there are multiple writers to the Page 4/7

 pipe, and on n, the number of bytes to be written:

 O_NONBLOCK disabled, n <= PIPE_BUF

 All n bytes are written atomically; write(2) may block if there

 is not room for n bytes to be written immediately

 O_NONBLOCK enabled, n <= PIPE_BUF

 If there is room to write n bytes to the pipe, then write(2)

 succeeds immediately, writing all n bytes; otherwise write(2)

 fails, with errno set to EAGAIN.

 O_NONBLOCK disabled, n > PIPE_BUF

 The write is nonatomic: the data given to write(2) may be inter?

 leaved with write(2)s by other process; the write(2) blocks un?

 til n bytes have been written.

 O_NONBLOCK enabled, n > PIPE_BUF

 If the pipe is full, then write(2) fails, with errno set to EA?

 GAIN. Otherwise, from 1 to n bytes may be written (i.e., a

 "partial write" may occur; the caller should check the return

 value from write(2) to see how many bytes were actually writ?

 ten), and these bytes may be interleaved with writes by other

 processes.

 Open file status flags

 The only open file status flags that can be meaningfully applied to a

 pipe or FIFO are O_NONBLOCK and O_ASYNC.

 Setting the O_ASYNC flag for the read end of a pipe causes a signal

 (SIGIO by default) to be generated when new input becomes available on

 the pipe. The target for delivery of signals must be set using the fc?

 ntl(2) F_SETOWN command. On Linux, O_ASYNC is supported for pipes and

 FIFOs only since kernel 2.6.

 Portability notes

 On some systems (but not Linux), pipes are bidirectional: data can be

 transmitted in both directions between the pipe ends. POSIX.1 requires

 only unidirectional pipes. Portable applications should avoid reliance

 on bidirectional pipe semantics.

 BUGS Page 5/7

 Before Linux 4.9, some bugs affected the handling of the pipe-user-

 pages-soft and pipe-user-pages-hard limits when using the fcntl(2)

 F_SETPIPE_SZ operation to change a pipe's capacity:

 (1) When increasing the pipe capacity, the checks against the soft and

 hard limits were made against existing consumption, and excluded

 the memory required for the increased pipe capacity. The new in?

 crease in pipe capacity could then push the total memory used by

 the user for pipes (possibly far) over a limit. (This could also

 trigger the problem described next.)

 Starting with Linux 4.9, the limit checking includes the memory

 required for the new pipe capacity.

 (2) The limit checks were performed even when the new pipe capacity

 was less than the existing pipe capacity. This could lead to

 problems if a user set a large pipe capacity, and then the limits

 were lowered, with the result that the user could no longer de?

 crease the pipe capacity.

 Starting with Linux 4.9, checks against the limits are performed

 only when increasing a pipe's capacity; an unprivileged user can

 always decrease a pipe's capacity.

 (3) The accounting and checking against the limits were done as fol?

 lows:

 (a) Test whether the user has exceeded the limit.

 (b) Make the new pipe buffer allocation.

 (c) Account new allocation against the limits.

 This was racey. Multiple processes could pass point (a) simulta?

 neously, and then allocate pipe buffers that were accounted for

 only in step (c), with the result that the user's pipe buffer al?

 location could be pushed over the limit.

 Starting with Linux 4.9, the accounting step is performed before

 doing the allocation, and the operation fails if the limit would

 be exceeded.

 Before Linux 4.9, bugs similar to points (1) and (3) could also occur

 when the kernel allocated memory for a new pipe buffer; that is, when Page 6/7

 calling pipe(2) and when opening a previously unopened FIFO.

SEE ALSO

 mkfifo(1), dup(2), fcntl(2), open(2), pipe(2), poll(2), select(2),

 socketpair(2), splice(2), stat(2), tee(2), vmsplice(2), mkfifo(3),

 epoll(7), fifo(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 PIPE(7)

Page 7/7

