
Rocky Enterprise Linux 9.2 Manual Pages on command 'pidfd_send_signal.2'

$ man pidfd_send_signal.2

PIDFD_SEND_SIGNAL(2) Linux Programmer's Manual PIDFD_SEND_SIGNAL(2)

NAME

 pidfd_send_signal - send a signal to a process specified by a file de?

 scriptor

SYNOPSIS

 #include <signal.h>

 int pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

 unsigned int flags);

DESCRIPTION

 The pidfd_send_signal() system call sends the signal sig to the target

 process referred to by pidfd, a PID file descriptor that refers to a

 process.

 If the info argument points to a siginfo_t buffer, that buffer should

 be populated as described in rt_sigqueueinfo(2).

 If the info argument is a NULL pointer, this is equivalent to specify?

 ing a pointer to a siginfo_t buffer whose fields match the values that

 are implicitly supplied when a signal is sent using kill(2):

 * si_signo is set to the signal number; Page 1/5

 * si_errno is set to 0;

 * si_code is set to SI_USER;

 * si_pid is set to the caller's PID; and

 * si_uid is set to the caller's real user ID.

 The calling process must either be in the same PID namespace as the

 process referred to by pidfd, or be in an ancestor of that namespace.

 The flags argument is reserved for future use; currently, this argument

 must be specified as 0.

RETURN VALUE

 On success, pidfd_send_signal() returns 0. On error, -1 is returned

 and errno is set to indicate the cause of the error.

ERRORS

 EBADF pidfd is not a valid PID file descriptor.

 EINVAL sig is not a valid signal.

 EINVAL The calling process is not in a PID namespace from which it can

 send a signal to the target process.

 EINVAL flags is not 0.

 EPERM The calling process does not have permission to send the signal

 to the target process.

 EPERM pidfd doesn't refer to the calling process, and info.si_code is

 invalid (see rt_sigqueueinfo(2)).

 ESRCH The target process does not exist (i.e., it has terminated and

 been waited on).

VERSIONS

 pidfd_send_signal() first appeared in Linux 5.1.

CONFORMING TO

 pidfd_send_signal() is Linux specific.

NOTES

 Currently, there is no glibc wrapper for this system call; call it us?

 ing syscall(2).

 PID file descriptors

 The pidfd argument is a PID file descriptor, a file descriptor that

 refers to process. Such a file descriptor can be obtained in any of Page 2/5

 the following ways:

 * by opening a /proc/[pid] directory;

 * using pidfd_open(2); or

 * via the PID file descriptor that is returned by a call to clone(2)

 or clone3(2) that specifies the CLONE_PIDFD flag.

 The pidfd_send_signal() system call allows the avoidance of race condi?

 tions that occur when using traditional interfaces (such as kill(2)) to

 signal a process. The problem is that the traditional interfaces spec?

 ify the target process via a process ID (PID), with the result that the

 sender may accidentally send a signal to the wrong process if the orig?

 inally intended target process has terminated and its PID has been re?

 cycled for another process. By contrast, a PID file descriptor is a

 stable reference to a specific process; if that process terminates,

 pidfd_send_signal() fails with the error ESRCH.

EXAMPLES

 #define _GNU_SOURCE

 #include <limits.h>

 #include <signal.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/syscall.h>

 #ifndef __NR_pidfd_send_signal

 #define __NR_pidfd_send_signal 424

 #endif

 static int

 pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

 unsigned int flags)

 {

 return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags);

 } Page 3/5

 int

 main(int argc, char *argv[])

 {

 siginfo_t info;

 char path[PATH_MAX];

 int pidfd, sig;

 if (argc != 3) {

 fprintf(stderr, "Usage: %s <pid> <signal>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 sig = atoi(argv[2]);

 /* Obtain a PID file descriptor by opening the /proc/PID directory

 of the target process */

 snprintf(path, sizeof(path), "/proc/%s", argv[1]);

 pidfd = open(path, O_RDONLY);

 if (pidfd == -1) {

 perror("open");

 exit(EXIT_FAILURE);

 }

 /* Populate a 'siginfo_t' structure for use with

 pidfd_send_signal() */

 memset(&info, 0, sizeof(info));

 info.si_code = SI_QUEUE;

 info.si_signo = sig;

 info.si_errno = 0;

 info.si_uid = getuid();

 info.si_pid = getpid();

 info.si_value.sival_int = 1234;

 /* Send the signal */

 if (pidfd_send_signal(pidfd, sig, &info, 0) == -1) {

 perror("pidfd_send_signal");

 exit(EXIT_FAILURE);

 } Page 4/5

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 clone(2), kill(2), pidfd_open(2), rt_sigqueueinfo(2), sigaction(2),

 pid_namespaces(7), signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PIDFD_SEND_SIGNAL(2)

Page 5/5

