
Rocky Enterprise Linux 9.2 Manual Pages on command 'pcre2perform.3'

$ man pcre2perform.3

PCRE2PERFORM(3) Library Functions Manual PCRE2PERFORM(3)

NAME

 PCRE2 - Perl-compatible regular expressions (revised API)

PCRE2 PERFORMANCE

 Two aspects of performance are discussed below: memory usage and pro?

 cessing time. The way you express your pattern as a regular expression

 can affect both of them.

COMPILED PATTERN MEMORY USAGE

 Patterns are compiled by PCRE2 into a reasonably efficient interpretive

 code, so that most simple patterns do not use much memory for storing

 the compiled version. However, there is one case where the memory usage

 of a compiled pattern can be unexpectedly large. If a parenthesized

 group has a quantifier with a minimum greater than 1 and/or a limited

 maximum, the whole group is repeated in the compiled code. For example,

 the pattern

 (abc|def){2,4}

 is compiled as if it were

 (abc|def)(abc|def)((abc|def)(abc|def)?)? Page 1/6

 (Technical aside: It is done this way so that backtrack points within

 each of the repetitions can be independently maintained.)

 For regular expressions whose quantifiers use only small numbers, this

 is not usually a problem. However, if the numbers are large, and par?

 ticularly if such repetitions are nested, the memory usage can become

 an embarrassment. For example, the very simple pattern

 ((ab){1,1000}c){1,3}

 uses over 50KiB when compiled using the 8-bit library. When PCRE2 is

 compiled with its default internal pointer size of two bytes, the size

 limit on a compiled pattern is 65535 code units in the 8-bit and 16-bit

 libraries, and this is reached with the above pattern if the outer rep?

 etition is increased from 3 to 4. PCRE2 can be compiled to use larger

 internal pointers and thus handle larger compiled patterns, but it is

 better to try to rewrite your pattern to use less memory if you can.

 One way of reducing the memory usage for such patterns is to make use

 of PCRE2's "subroutine" facility. Re-writing the above pattern as

 ((ab)(?2){0,999}c)(?1){0,2}

 reduces the memory requirements to around 16KiB, and indeed it remains

 under 20KiB even with the outer repetition increased to 100. However,

 this kind of pattern is not always exactly equivalent, because any cap?

 tures within subroutine calls are lost when the subroutine completes.

 If this is not a problem, this kind of rewriting will allow you to

 process patterns that PCRE2 cannot otherwise handle. The matching per?

 formance of the two different versions of the pattern are roughly the

 same. (This applies from release 10.30 - things were different in ear?

 lier releases.)

STACK AND HEAP USAGE AT RUN TIME

 From release 10.30, the interpretive (non-JIT) version of pcre2_match()

 uses very little system stack at run time. In earlier releases recur?

 sive function calls could use a great deal of stack, and this could

 cause problems, but this usage has been eliminated. Backtracking posi?

 tions are now explicitly remembered in memory frames controlled by the

 code. An initial 20KiB vector of frames is allocated on the system Page 2/6

 stack (enough for about 100 frames for small patterns), but if this is

 insufficient, heap memory is used. The amount of heap memory can be

 limited; if the limit is set to zero, only the initial stack vector is

 used. Rewriting patterns to be time-efficient, as described below, may

 also reduce the memory requirements.

 In contrast to pcre2_match(), pcre2_dfa_match() does use recursive

 function calls, but only for processing atomic groups, lookaround as?

 sertions, and recursion within the pattern. The original version of the

 code used to allocate quite large internal workspace vectors on the

 stack, which caused some problems for some patterns in environments

 with small stacks. From release 10.32 the code for pcre2_dfa_match()

 has been re-factored to use heap memory when necessary for internal

 workspace when recursing, though recursive function calls are still

 used.

 The "match depth" parameter can be used to limit the depth of function

 recursion, and the "match heap" parameter to limit heap memory in

 pcre2_dfa_match().

PROCESSING TIME

 Certain items in regular expression patterns are processed more effi?

 ciently than others. It is more efficient to use a character class like

 [aeiou] than a set of single-character alternatives such as

 (a|e|i|o|u). In general, the simplest construction that provides the

 required behaviour is usually the most efficient. Jeffrey Friedl's book

 contains a lot of useful general discussion about optimizing regular

 expressions for efficient performance. This document contains a few ob?

 servations about PCRE2.

 Using Unicode character properties (the \p, \P, and \X escapes) is

 slow, because PCRE2 has to use a multi-stage table lookup whenever it

 needs a character's property. If you can find an alternative pattern

 that does not use character properties, it will probably be faster.

 By default, the escape sequences \b, \d, \s, and \w, and the POSIX

 character classes such as [:alpha:] do not use Unicode properties,

 partly for backwards compatibility, and partly for performance reasons. Page 3/6

 However, you can set the PCRE2_UCP option or start the pattern with

 (*UCP) if you want Unicode character properties to be used. This can

 double the matching time for items such as \d, when matched with

 pcre2_match(); the performance loss is less with a DFA matching func?

 tion, and in both cases there is not much difference for \b.

 When a pattern begins with .* not in atomic parentheses, nor in paren?

 theses that are the subject of a backreference, and the PCRE2_DOTALL

 option is set, the pattern is implicitly anchored by PCRE2, since it

 can match only at the start of a subject string. If the pattern has

 multiple top-level branches, they must all be anchorable. The optimiza?

 tion can be disabled by the PCRE2_NO_DOTSTAR_ANCHOR option, and is au?

 tomatically disabled if the pattern contains (*PRUNE) or (*SKIP).

 If PCRE2_DOTALL is not set, PCRE2 cannot make this optimization, be?

 cause the dot metacharacter does not then match a newline, and if the

 subject string contains newlines, the pattern may match from the char?

 acter immediately following one of them instead of from the very start.

 For example, the pattern

 .*second

 matches the subject "first\nand second" (where \n stands for a newline

 character), with the match starting at the seventh character. In order

 to do this, PCRE2 has to retry the match starting after every newline

 in the subject.

 If you are using such a pattern with subject strings that do not con?

 tain newlines, the best performance is obtained by setting

 PCRE2_DOTALL, or starting the pattern with ^.* or ^.*? to indicate ex?

 plicit anchoring. That saves PCRE2 from having to scan along the sub?

 ject looking for a newline to restart at.

 Beware of patterns that contain nested indefinite repeats. These can

 take a long time to run when applied to a string that does not match.

 Consider the pattern fragment

 ^(a+)*

 This can match "aaaa" in 16 different ways, and this number increases

 very rapidly as the string gets longer. (The * repeat can match 0, 1, Page 4/6

 2, 3, or 4 times, and for each of those cases other than 0 or 4, the +

 repeats can match different numbers of times.) When the remainder of

 the pattern is such that the entire match is going to fail, PCRE2 has

 in principle to try every possible variation, and this can take an ex?

 tremely long time, even for relatively short strings.

 An optimization catches some of the more simple cases such as

 (a+)*b

 where a literal character follows. Before embarking on the standard

 matching procedure, PCRE2 checks that there is a "b" later in the sub?

 ject string, and if there is not, it fails the match immediately. How?

 ever, when there is no following literal this optimization cannot be

 used. You can see the difference by comparing the behaviour of

 (a+)*\d

 with the pattern above. The former gives a failure almost instantly

 when applied to a whole line of "a" characters, whereas the latter

 takes an appreciable time with strings longer than about 20 characters.

 In many cases, the solution to this kind of performance issue is to use

 an atomic group or a possessive quantifier. This can often reduce mem?

 ory requirements as well. As another example, consider this pattern:

 ([^<]|<(?!inet))+

 It matches from wherever it starts until it encounters "<inet" or the

 end of the data, and is the kind of pattern that might be used when

 processing an XML file. Each iteration of the outer parentheses matches

 either one character that is not "<" or a "<" that is not followed by

 "inet". However, each time a parenthesis is processed, a backtracking

 position is passed, so this formulation uses a memory frame for each

 matched character. For a long string, a lot of memory is required. Con?

 sider now this rewritten pattern, which matches exactly the same

 strings:

 ([^<]++|<(?!inet))+

 This runs much faster, because sequences of characters that do not con?

 tain "<" are "swallowed" in one item inside the parentheses, and a pos?

 sessive quantifier is used to stop any backtracking into the runs of Page 5/6

 non-"<" characters. This version also uses a lot less memory because

 entry to a new set of parentheses happens only when a "<" character

 that is not followed by "inet" is encountered (and we assume this is

 relatively rare).

 This example shows that one way of optimizing performance when matching

 long subject strings is to write repeated parenthesized subpatterns to

 match more than one character whenever possible.

 SETTING RESOURCE LIMITS

 You can set limits on the amount of processing that takes place when

 matching, and on the amount of heap memory that is used. The default

 values of the limits are very large, and unlikely ever to operate. They

 can be changed when PCRE2 is built, and they can also be set when

 pcre2_match() or pcre2_dfa_match() is called. For details of these in?

 terfaces, see the pcre2build documentation and the section entitled

 "The match context" in the pcre2api documentation.

 The pcre2test test program has a modifier called "find_limits" which,

 if applied to a subject line, causes it to find the smallest limits

 that allow a pattern to match. This is done by repeatedly matching with

 different limits.

AUTHOR

 Philip Hazel

 University Computing Service

 Cambridge, England.

REVISION

 Last updated: 03 February 2019

 Copyright (c) 1997-2019 University of Cambridge.

PCRE2 10.33 03 February 2019 PCRE2PERFORM(3)

Page 6/6

