
Rocky Enterprise Linux 9.2 Manual Pages on command 'openssl.cnf.5'

$ man openssl.cnf.5

CONFIG(5ossl) OpenSSL CONFIG(5ossl)

NAME

 config - OpenSSL CONF library configuration files

DESCRIPTION

 This page documents the syntax of OpenSSL configuration files, as

 parsed by NCONF_load(3) and related functions. This format is used by

 many of the OpenSSL commands, and to initialize the libraries when used

 by any application.

 The first part describes the general syntax of the configuration files,

 and subsequent sections describe the semantics of individual modules.

 Other modules are described in fips_config(5) and x509v3_config(5).

 The syntax for defining ASN.1 values is described in

 ASN1_generate_nconf(3).

SYNTAX

 A configuration file is a series of lines. Blank lines, and whitespace

 between the elements of a line, have no significance. A comment starts

 with a # character; the rest of the line is ignored. If the # is the

 first non-space character in a line, the entire line is ignored. Page 1/13

 Directives

 Two directives can be used to control the parsing of configuration

 files: .include and .pragma.

 For compatibility with older versions of OpenSSL, an equal sign after

 the directive will be ignored. Older versions will treat it as an

 assignment, so care should be taken if the difference in semantics is

 important.

 A file can include other files using the include syntax:

 .include [=] pathname

 If pathname is a simple filename, that file is included directly at

 that point. Included files can have .include statements that specify

 other files. If pathname is a directory, all files within that

 directory that have a ".cnf" or ".conf" extension will be included.

 (This is only available on systems with POSIX IO support.) Any sub-

 directories found inside the pathname are ignored. Similarly, if a

 file is opened while scanning a directory, and that file has an

 .include directive that specifies a directory, that is also ignored.

 As a general rule, the pathname should be an absolute path; this can be

 enforced with the abspath and includedir pragmas, described below. The

 environment variable OPENSSL_CONF_INCLUDE, if it exists, is prepended

 to all relative pathnames. If the pathname is still relative, it is

 interpreted based on the current working directory.

 To require all file inclusions to name absolute paths, use the

 following directive:

 .pragma [=] abspath:value

 The default behavior, where the value is false or off, is to allow

 relative paths. To require all .include pathnames to be absolute paths,

 use a value of true or on.

 In these files, the dollar sign, $, is used to reference a variable, as

 described below. On some platforms, however, it is common to treat $

 as a regular character in symbol names. Supporting this behavior can

 be done with the following directive:

 .pragma [=] dollarid:value Page 2/13

 The default behavior, where the value is false or off, is to treat the

 dollarsign as indicating a variable name; "foo$bar" is interpreted as

 "foo" followed by the expansion of the variable "bar". If value is true

 or on, then "foo$bar" is a single seven-character name nad variable

 expansions must be specified using braces or parentheses.

 .pragma [=] includedir:value

 If a relative pathname is specified in the .include directive, and the

 OPENSSL_CONF_INCLUDE environment variable doesn't exist, then the value

 of the includedir pragma, if it exists, is prepended to the pathname.

 Settings

 A configuration file is divided into a number of sections. A section

 begins with the section name in square brackets, and ends when a new

 section starts, or at the end of the file. The section name can

 consist of alphanumeric characters and underscores. Whitespace between

 the name and the brackets is removed.

 The first section of a configuration file is special and is referred to

 as the default section. This section is usually unnamed and spans from

 the start of file until the first named section. When a name is being

 looked up, it is first looked up in the current or named section, and

 then the default section if necessary.

 The environment is mapped onto a section called ENV.

 Within a section are a series of name/value assignments, described in

 more detail below. As a reminder, the square brackets shown in this

 example are required, not optional:

 [section]

 name1 = This is value1

 name2 = Another value

 ...

 [newsection]

 name1 = New value1

 name3 = Value 3

 The name can contain any alphanumeric characters as well as a few

 punctuation symbols such as . , ; and _. Whitespace after the name and Page 3/13

 before the equal sign is ignored.

 If a name is repeated in the same section, then all but the last value

 are ignored. In certain circumstances, such as with Certificate DNs,

 the same field may occur multiple times. In order to support this,

 commands like openssl-req(1) ignore any leading text that is preceded

 with a period. For example:

 1.OU = First OU

 2.OU = Second OU

 The value consists of the string following the = character until end of

 line with any leading and trailing whitespace removed.

 The value string undergoes variable expansion. The text $var or

 "${var}" inserts the value of the named variable from the current

 section. To use a value from another section use $section::name or

 "${section::name}". By using $ENV::name, the value of the specified

 environment variable will be substituted.

 Variables must be defined before their value is referenced, otherwise

 an error is flagged and the file will not load. This can be worked

 around by specifying a default value in the default section before the

 variable is used.

 Any name/value settings in an ENV section are available to the

 configuration file, but are not propagated to the environment.

 It is an error if the value ends up longer than 64k.

 It is possible to escape certain characters by using a single ' or

 double " quote around the value, or using a backslash \ before the

 character, By making the last character of a line a \ a value string

 can be spread across multiple lines. In addition the sequences \n, \r,

 \b and \t are recognized.

 The expansion and escape rules as described above that apply to value

 also apply to the pathname of the .include directive.

OPENSSL LIBRARY CONFIGURATION

 The sections below use the informal term module to refer to a part of

 the OpenSSL functionality. This is not the same as the formal term FIPS

 module, for example. Page 4/13

 The OpenSSL configuration looks up the value of openssl_conf in the

 default section and takes that as the name of a section that specifies

 how to configure any modules in the library. It is not an error to

 leave any module in its default configuration. An application can

 specify a different name by calling CONF_modules_load_file(), for

 example, directly.

 OpenSSL also looks up the value of config_diagnostics. If this exists

 and has a nonzero numeric value, any error suppressing flags passed to

 CONF_modules_load() will be ignored. This is useful for diagnosing

 misconfigurations but its use in production requires additional

 consideration. With this option enabled, a configuration error will

 completely prevent access to a service. Without this option and in the

 presence of a configuration error, access will be allowed but the

 desired configuration will not be used.

 # These must be in the default section

 config_diagnostics = 1

 openssl_conf = openssl_init

 [openssl_init]

 oid_section = oids

 providers = providers

 alg_section = evp_properties

 ssl_conf = ssl_configuration

 engines = engines

 random = random

 [oids]

 ... new oids here ...

 [providers]

 ... provider stuff here ...

 [evp_properties]

 ... EVP properties here ...

 [ssl_configuration]

 ... SSL/TLS configuration properties here ...

 [engines] Page 5/13

 ... engine properties here ...

 [random]

 ... random properties here ...

 The semantics of each module are described below. The phrase "in the

 initialization section" refers to the section identified by the

 openssl_conf or other name (given as openssl_init in the example

 above). The examples below assume the configuration above is used to

 specify the individual sections.

 ASN.1 Object Identifier Configuration

 The name oid_section in the initialization section names the section

 containing name/value pairs of OID's. The name is the short name; the

 value is an optional long name followed by a comma, and the numeric

 value. While some OpenSSL commands have their own section for

 specifying OID's, this section makes them available to all commands and

 applications.

 [oids]

 shortName = a very long OID name, 1.2.3.4

 newoid1 = 1.2.3.4.1

 some_other_oid = 1.2.3.5

 If a full configuration with the above fragment is in the file

 example.cnf, then the following command line:

 OPENSSL_CONF=example.cnf openssl asn1parse -genstr OID:1.2.3.4.1

 will output:

 0:d=0 hl=2 l= 4 prim: OBJECT :newoid1

 showing that the OID "newoid1" has been added as "1.2.3.4.1".

 Provider Configuration

 The name providers in the initialization section names the section

 containing cryptographic provider configuration. The name/value

 assignments in this section each name a provider, and point to the

 configuration section for that provider. The provider-specific section

 is used to specify how to load the module, activate it, and set other

 parameters.

 Within a provider section, the following names have meaning: Page 6/13

 identity

 This is used to specify an alternate name, overriding the default

 name specified in the list of providers. For example:

 [providers]

 foo = foo_provider

 [foo_provider]

 identity = my_fips_module

 module

 Specifies the pathname of the module (typically a shared library)

 to load.

 activate

 If present, the module is activated. The value assigned to this

 name is not significant.

 All parameters in the section as well as sub-sections are made

 available to the provider.

 Loading the legacy provider

 Uncomment the sections that start with ## in openssl.cnf to enable the

 legacy provider. Note: In general it is not recommended to use the

 above mentioned algorithms for security critical operations, as they

 are cryptographically weak or vulnerable to side-channel attacks and as

 such have been deprecated.

 Default provider and its activation

 If no providers are activated explicitly, the default one is activated

 implicitly. See OSSL_PROVIDER-default(7) for more details.

 If you add a section explicitly activating any other provider(s), you

 most probably need to explicitly activate the default provider,

 otherwise it becomes unavailable in openssl. It may make the system

 remotely unavailable.

 EVP Configuration

 The name alg_section in the initialization section names the section

 containing algorithmic properties when using the EVP API.

 Within the algorithm properties section, the following names have

 meaning: Page 7/13

 default_properties

 The value may be anything that is acceptable as a property query

 string for EVP_set_default_properties().

 rh-allow-sha1-signatures

 The value is a boolean that can be yes or no. If the value is not

 set, it behaves as if it was set to no.

 When set to no, any attempt to create or verify a signature with a

 SHA1 digest will fail. For compatibility with older versions of

 OpenSSL, set this option to yes. This setting also affects TLS,

 where signature algorithms that use SHA1 as digest will no longer

 be supported if this option is set to no. Note that enabling

 rh-allow-sha1-signatures will allow TLS signature algorithms that

 use SHA1 in security level 2, despite the definition of security

 level 2 of 112 bits of security, which SHA1 does not meet. Because

 TLS 1.1 or lower use MD5-SHA1 as pseudorandom function (PRF) to

 derive key material, disabling rh-allow-sha1-signatures requires

 the use of TLS 1.2 or newer.

 fips_mode (deprecated)

 The value is a boolean that can be yes or no. If the value is yes,

 this is exactly equivalent to:

 default_properties = fips=yes

 If the value is no, nothing happens. Using this name is deprecated,

 and if used, it must be the only name in the section.

 SSL Configuration

 The name ssl_conf in the initialization section names the section

 containing the list of SSL/TLS configurations. As with the providers,

 each name in this section identifies a section with the configuration

 for that name. For example:

 [ssl_configuration]

 server = server_tls_config

 client = client_tls_config

 system_default = tls_system_default

 [server_tls_config] Page 8/13

 ... configuration for SSL/TLS servers ...

 [client_tls_config]

 ... configuration for SSL/TLS clients ...

 The configuration name system_default has a special meaning. If it

 exists, it is applied whenever an SSL_CTX object is created. For

 example, to impose system-wide minimum TLS and DTLS protocol versions:

 [tls_system_default]

 MinProtocol = TLSv1.2

 MinProtocol = DTLSv1.2

 The minimum TLS protocol is applied to SSL_CTX objects that are TLS-

 based, and the minimum DTLS protocol to those are DTLS-based. The same

 applies also to maximum versions set with MaxProtocol.

 Each configuration section consists of name/value pairs that are parsed

 by SSL_CONF_cmd(3), which will be called by SSL_CTX_config() or

 SSL_config(), appropriately. Note that any characters before an

 initial dot in the configuration section are ignored, so that the same

 command can be used multiple times. This probably is most useful for

 loading different key types, as shown here:

 [server_tls_config]

 RSA.Certificate = server-rsa.pem

 ECDSA.Certificate = server-ecdsa.pem

 Engine Configuration

 The name engines in the initialization section names the section

 containing the list of ENGINE configurations. As with the providers,

 each name in this section identifies an engine with the configuration

 for that engine. The engine-specific section is used to specify how to

 load the engine, activate it, and set other parameters.

 Within an engine section, the following names have meaning:

 engine_id

 This is used to specify an alternate name, overriding the default

 name specified in the list of engines. If present, it must be

 first. For example:

 [engines] Page 9/13

 foo = foo_engine

 [foo_engine]

 engine_id = myfoo

 dynamic_path

 This loads and adds an ENGINE from the given path. It is equivalent

 to sending the ctrls SO_PATH with the path argument followed by

 LIST_ADD with value 2 and LOAD to the dynamic ENGINE. If this is

 not the required behaviour then alternative ctrls can be sent

 directly to the dynamic ENGINE using ctrl commands.

 init

 This specifies whether to initialize the ENGINE. If the value is 0

 the ENGINE will not be initialized, if the value is 1 an attempt is

 made to initialize the ENGINE immediately. If the init command is

 not present then an attempt will be made to initialize the ENGINE

 after all commands in its section have been processed.

 default_algorithms

 This sets the default algorithms an ENGINE will supply using the

 function ENGINE_set_default_string().

 All other names are taken to be the name of a ctrl command that is sent

 to the ENGINE, and the value is the argument passed with the command.

 The special value EMPTY means no value is sent with the command. For

 example:

 [engines]

 foo = foo_engine

 [foo_engine]

 dynamic_path = /some/path/fooengine.so

 some_ctrl = some_value

 default_algorithms = ALL

 other_ctrl = EMPTY

 Random Configuration

 The name random in the initialization section names the section

 containing the random number generater settings.

 Within the random section, the following names have meaning: Page 10/13

 random

 This is used to specify the random bit generator. For example:

 [random]

 random = CTR-DRBG

 The available random bit generators are:

 CTR-DRBG

 HASH-DRBG

 HMAC-DRBG

 cipher

 This specifies what cipher a CTR-DRBG random bit generator will

 use. Other random bit generators ignore this name. The default

 value is AES-256-CTR.

 digest

 This specifies what digest the HASH-DRBG or HMAC-DRBG random bit

 generators will use. Other random bit generators ignore this name.

 properties

 This sets the property query used when fetching the random bit

 generator and any underlying algorithms.

 seed

 This sets the randomness source that should be used. By default

 SEED-SRC will be used outside of the FIPS provider. The FIPS

 provider uses call backs to access the same randomness sources from

 outside the validated boundary.

 seed_properties

 This sets the property query used when fetching the randomness

 source.

EXAMPLES

 This example shows how to use quoting and escaping.

 # This is the default section.

 HOME = /temp

 configdir = $ENV::HOME/config

 [section_one]

 # Quotes permit leading and trailing whitespace Page 11/13

 any = " any variable name "

 other = A string that can \

 cover several lines \

 by including \\ characters

 message = Hello World\n

 [section_two]

 greeting = $section_one::message

 This example shows how to expand environment variables safely. In this

 example, the variable tempfile is intended to refer to a temporary

 file, and the environment variable TEMP or TMP, if present, specify the

 directory where the file should be put. Since the default section is

 checked if a variable does not exist, it is possible to set TMP to

 default to /tmp, and TEMP to default to TMP.

 # These two lines must be in the default section.

 TMP = /tmp

 TEMP = $ENV::TMP

 # This can be used anywhere

 tmpfile = ${ENV::TEMP}/tmp.filename

 This example shows how to enforce FIPS mode for the application sample.

 sample = fips_config

 [fips_config]

 alg_section = evp_properties

 [evp_properties]

 default_properties = "fips=yes"

ENVIRONMENT

 OPENSSL_CONF

 The path to the config file, or the empty string for none. Ignored

 in set-user-ID and set-group-ID programs.

 OPENSSL_ENGINES

 The path to the engines directory. Ignored in set-user-ID and set-

 group-ID programs.

 OPENSSL_MODULES

 The path to the directory with OpenSSL modules, such as providers. Page 12/13

 Ignored in set-user-ID and set-group-ID programs.

 OPENSSL_CONF_INCLUDE

 The optional path to prepend to all .include paths.

BUGS

 There is no way to include characters using the octal \nnn form.

 Strings are all null terminated so nulls cannot form part of the value.

 The escaping isn't quite right: if you want to use sequences like \n

 you can't use any quote escaping on the same line.

 The limit that only one directory can be opened and read at a time can

 be considered a bug and should be fixed.

HISTORY

 An undocumented API, NCONF_WIN32(), used a slightly different set of

 parsing rules there were intended to be tailored to the Microsoft

 Windows platform. Specifically, the backslash character was not an

 escape character and could be used in pathnames, only the double-quote

 character was recognized, and comments began with a semi-colon. This

 function was deprecated in OpenSSL 3.0; applications with configuration

 files using that syntax will have to be modified.

SEE ALSO

 openssl-x509(1), openssl-req(1), openssl-ca(1), ASN1_generate_nconf(3),

 EVP_set_default_properties(3), CONF_modules_load(3),

 CONF_modules_load_file(3), fips_config(5), and x509v3_config(5).

COPYRIGHT

 Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

 Licensed under the Apache License 2.0 (the "License"). You may not use

 this file except in compliance with the License. You can obtain a copy

 in the file LICENSE in the source distribution or at

 <https://www.openssl.org/source/license.html>.

3.0.7 2023-07-13 CONFIG(5ossl)

Page 13/13

