
Rocky Enterprise Linux 9.2 Manual Pages on command 'openat2.2'

$ man openat2.2

OPENAT2(2) Linux Programmer's Manual OPENAT2(2)

NAME

 openat2 - open and possibly create a file (extended)

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <linux/openat2.h>

 long openat2(int dirfd, const char *pathname,

 struct open_how *how, size_t size);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The openat2() system call is an extension of openat(2) and provides a

 superset of its functionality.

 The openat2() system call opens the file specified by pathname. If the

 specified file does not exist, it may optionally (if O_CREAT is speci?

 fied in how.flags) be created.

 As with openat(2), if pathname is a relative pathname, then it is in? Page 1/9

 terpreted relative to the directory referred to by the file descriptor

 dirfd (or the current working directory of the calling process, if

 dirfd is the special value AT_FDCWD). If pathname is an absolute path?

 name, then dirfd is ignored (unless how.resolve contains RE?

 SOLVE_IN_ROOT, in which case pathname is resolved relative to dirfd).

 Rather than taking a single flags argument, an extensible structure

 (how) is passed to allow for future extensions. The size argument must

 be specified as sizeof(struct open_how).

 The open_how structure

 The how argument specifies how pathname should be opened, and acts as a

 superset of the flags and mode arguments to openat(2). This argument

 is a pointer to a structure of the following form:

 struct open_how {

 u64 flags; /* O_* flags */

 u64 mode; /* Mode for O_{CREAT,TMPFILE} */

 u64 resolve; /* RESOLVE_* flags */

 /* ... */

 };

 Any future extensions to openat2() will be implemented as new fields

 appended to the above structure, with a zero value in a new field re?

 sulting in the kernel behaving as though that extension field was not

 present. Therefore, the caller must zero-fill this structure on ini?

 tialization. (See the "Extensibility" section of the NOTES for more

 detail on why this is necessary.)

 The fields of the open_how structure are as follows:

 flags This field specifies the file creation and file status flags to

 use when opening the file. All of the O_* flags defined for

 openat(2) are valid openat2() flag values.

 Whereas openat(2) ignores unknown bits in its flags argument,

 openat2() returns an error if unknown or conflicting flags are

 specified in how.flags.

 mode This field specifies the mode for the new file, with identical

 semantics to the mode argument of openat(2). Page 2/9

 Whereas openat(2) ignores bits other than those in the range

 07777 in its mode argument, openat2() returns an error if

 how.mode contains bits other than 07777. Similarly, an error is

 returned if openat2() is called with a nonzero how.mode and

 how.flags does not contain O_CREAT or O_TMPFILE.

 resolve

 This is a bit-mask of flags that modify the way in which all

 components of pathname will be resolved. (See path_resolu?

 tion(7) for background information.)

 The primary use case for these flags is to allow trusted pro?

 grams to restrict how untrusted paths (or paths inside untrusted

 directories) are resolved. The full list of resolve flags is as

 follows:

 RESOLVE_BENEATH

 Do not permit the path resolution to succeed if any com?

 ponent of the resolution is not a descendant of the di?

 rectory indicated by dirfd. This causes absolute sym?

 bolic links (and absolute values of pathname) to be re?

 jected.

 Currently, this flag also disables magic-link resolution

 (see below). However, this may change in the future.

 Therefore, to ensure that magic links are not resolved,

 the caller should explicitly specify RESOLVE_NO_MAGI?

 CLINKS.

 RESOLVE_IN_ROOT

 Treat the directory referred to by dirfd as the root di?

 rectory while resolving pathname. Absolute symbolic

 links are interpreted relative to dirfd. If a prefix

 component of pathname equates to dirfd, then an immedi?

 ately following .. component likewise equates to dirfd

 (just as /.. is traditionally equivalent to /). If path?

 name is an absolute path, it is also interpreted relative

 to dirfd. Page 3/9

 The effect of this flag is as though the calling process

 had used chroot(2) to (temporarily) modify its root di?

 rectory (to the directory referred to by dirfd). How?

 ever, unlike chroot(2) (which changes the filesystem root

 permanently for a process), RESOLVE_IN_ROOT allows a pro?

 gram to efficiently restrict path resolution on a per-

 open basis.

 Currently, this flag also disables magic-link resolution.

 However, this may change in the future. Therefore, to

 ensure that magic links are not resolved, the caller

 should explicitly specify RESOLVE_NO_MAGICLINKS.

 RESOLVE_NO_MAGICLINKS

 Disallow all magic-link resolution during path resolu?

 tion.

 Magic links are symbolic link-like objects that are most

 notably found in proc(5); examples include

 /proc/[pid]/exe and /proc/[pid]/fd/*. (See symlink(7)

 for more details.)

 Unknowingly opening magic links can be risky for some ap?

 plications. Examples of such risks include the follow?

 ing:

 ? If the process opening a pathname is a controlling

 process that currently has no controlling terminal (see

 credentials(7)), then opening a magic link inside

 /proc/[pid]/fd that happens to refer to a terminal

 would cause the process to acquire a controlling termi?

 nal.

 ? In a containerized environment, a magic link inside

 /proc may refer to an object outside the container, and

 thus may provide a means to escape from the container.

 Because of such risks, an application may prefer to dis?

 able magic link resolution using the RESOLVE_NO_MAGI?

 CLINKS flag. Page 4/9

 If the trailing component (i.e., basename) of pathname is

 a magic link, how.resolve contains RESOLVE_NO_MAGICLINKS,

 and how.flags contains both O_PATH and O_NOFOLLOW, then

 an O_PATH file descriptor referencing the magic link will

 be returned.

 RESOLVE_NO_SYMLINKS

 Disallow resolution of symbolic links during path resolu?

 tion. This option implies RESOLVE_NO_MAGICLINKS.

 If the trailing component (i.e., basename) of pathname is

 a symbolic link, how.resolve contains RESOLVE_NO_SYM?

 LINKS, and how.flags contains both O_PATH and O_NOFOLLOW,

 then an O_PATH file descriptor referencing the symbolic

 link will be returned.

 Note that the effect of the RESOLVE_NO_SYMLINKS flag,

 which affects the treatment of symbolic links in all of

 the components of pathname, differs from the effect of

 the O_NOFOLLOW file creation flag (in how.flags), which

 affects the handling of symbolic links only in the final

 component of pathname.

 Applications that employ the RESOLVE_NO_SYMLINKS flag are

 encouraged to make its use configurable (unless it is

 used for a specific security purpose), as symbolic links

 are very widely used by end-users. Setting this flag in?

 discriminately?i.e., for purposes not specifically re?

 lated to security?for all uses of openat2() may result in

 spurious errors on previously functional systems. This

 may occur if, for example, a system pathname that is used

 by an application is modified (e.g., in a new distribu?

 tion release) so that a pathname component (now) contains

 a symbolic link.

 RESOLVE_NO_XDEV

 Disallow traversal of mount points during path resolution

 (including all bind mounts). Consequently, pathname must Page 5/9

 either be on the same mount as the directory referred to

 by dirfd, or on the same mount as the current working di?

 rectory if dirfd is specified as AT_FDCWD.

 Applications that employ the RESOLVE_NO_XDEV flag are en?

 couraged to make its use configurable (unless it is used

 for a specific security purpose), as bind mounts are

 widely used by end-users. Setting this flag indiscrimi?

 nately?i.e., for purposes not specifically related to se?

 curity?for all uses of openat2() may result in spurious

 errors on previously functional systems. This may occur

 if, for example, a system pathname that is used by an ap?

 plication is modified (e.g., in a new distribution re?

 lease) so that a pathname component (now) contains a bind

 mount.

 If any bits other than those listed above are set in how.re?

 solve, an error is returned.

RETURN VALUE

 On success, a new file descriptor is returned. On error, -1 is re?

 turned, and errno is set appropriately.

ERRORS

 The set of errors returned by openat2() includes all of the errors re?

 turned by openat(2), as well as the following additional errors:

 E2BIG An extension that this kernel does not support was specified in

 how. (See the "Extensibility" section of NOTES for more detail

 on how extensions are handled.)

 EAGAIN how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BENEATH,

 and the kernel could not ensure that a ".." component didn't es?

 cape (due to a race condition or potential attack). The caller

 may choose to retry the openat2() call.

 EINVAL An unknown flag or invalid value was specified in how.

 EINVAL mode is nonzero, but how.flags does not contain O_CREAT or

 O_TMPFILE.

 EINVAL size was smaller than any known version of struct open_how. Page 6/9

 ELOOP how.resolve contains RESOLVE_NO_SYMLINKS, and one of the path

 components was a symbolic link (or magic link).

 ELOOP how.resolve contains RESOLVE_NO_MAGICLINKS, and one of the path

 components was a magic link.

 EXDEV how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BENEATH,

 and an escape from the root during path resolution was detected.

 EXDEV how.resolve contains RESOLVE_NO_XDEV, and a path component

 crosses a mount point.

VERSIONS

 openat2() first appeared in Linux 5.6.

CONFORMING TO

 This system call is Linux-specific.

 The semantics of RESOLVE_BENEATH were modeled after FreeBSD's O_BE?

 NEATH.

NOTES

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2).

 Extensibility

 In order to allow for future extensibility, openat2() requires the

 user-space application to specify the size of the open_how structure

 that it is passing. By providing this information, it is possible for

 openat2() to provide both forwards- and backwards-compatibility, with

 size acting as an implicit version number. (Because new extension

 fields will always be appended, the structure size will always in?

 crease.) This extensibility design is very similar to other system

 calls such as sched_setattr(2), perf_event_open(2), and clone3(2).

 If we let usize be the size of the structure as specified by the user-

 space application, and ksize be the size of the structure which the

 kernel supports, then there are three cases to consider:

 ? If ksize equals usize, then there is no version mismatch and how can

 be used verbatim.

 ? If ksize is larger than usize, then there are some extension fields

 that the kernel supports which the user-space application is unaware Page 7/9

 of. Because a zero value in any added extension field signifies a

 no-op, the kernel treats all of the extension fields not provided by

 the user-space application as having zero values. This provides

 backwards-compatibility.

 ? If ksize is smaller than usize, then there are some extension fields

 which the user-space application is aware of but which the kernel

 does not support. Because any extension field must have its zero

 values signify a no-op, the kernel can safely ignore the unsupported

 extension fields if they are all-zero. If any unsupported extension

 fields are nonzero, then -1 is returned and errno is set to E2BIG.

 This provides forwards-compatibility.

 Because the definition of struct open_how may change in the future

 (with new fields being added when system headers are updated), user-

 space applications should zero-fill struct open_how to ensure that re?

 compiling the program with new headers will not result in spurious er?

 rors at runtime. The simplest way is to use a designated initializer:

 struct open_how how = { .flags = O_RDWR,

 .resolve = RESOLVE_IN_ROOT };

 or explicitly using memset(3) or similar:

 struct open_how how;

 memset(&how, 0, sizeof(how));

 how.flags = O_RDWR;

 how.resolve = RESOLVE_IN_ROOT;

 A user-space application that wishes to determine which extensions the

 running kernel supports can do so by conducting a binary search on size

 with a structure which has every byte nonzero (to find the largest

 value which doesn't produce an error of E2BIG).

SEE ALSO

 openat(2), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 8/9

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 OPENAT2(2)

Page 9/9

