
Rocky Enterprise Linux 9.2 Manual Pages on command 'off_t.3'

$ man off_t.3

SYSTEM_DATA_TYPES(7) Linux Programmer's Manual SYSTEM_DATA_TYPES(7)

NAME

 system_data_types - overview of system data types

DESCRIPTION

 aiocb

 Include: <aio.h>.

 struct aiocb {

 int aio_fildes; /* File descriptor */

 off_t aio_offset; /* File offset */

 volatile void *aio_buf; /* Location of buffer */

 size_t aio_nbytes; /* Length of transfer */

 int aio_reqprio; /* Request priority offset */

 struct sigevent aio_sigevent; /* Signal number and value */

 int aio_lio_opcode;/* Operation to be performed */

 };

 For further information about this structure, see aio(7).

 Conforming to: POSIX.1-2001 and later.

 See also: aio_cancel(3), aio_error(3), aio_fsync(3), Page 1/20

 aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),

 lio_listio(3)

 clock_t

 Include: <time.h> or <sys/types.h>. Alternatively,

 <sys/time.h>.

 Used for system time in clock ticks or CLOCKS_PER_SEC (defined

 in <time.h>). According to POSIX, it shall be an integer type

 or a real-floating type.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: times(2), clock(3)

 clockid_t

 Include: <sys/types.h>. Alternatively, <time.h>.

 Used for clock ID type in the clock and timer functions. Ac?

 cording to POSIX, it shall be defined as an arithmetic type.

 Conforming to: POSIX.1-2001 and later.

 See also: clock_adjtime(2), clock_getres(2), clock_nanosleep(2),

 timer_create(2), clock_getcpuclockid(3)

 dev_t

 Include: <sys/types.h>. Alternatively, <sys/stat.h>.

 Used for device IDs. According to POSIX, it shall be an integer

 type. For further details of this type, see makedev(3).

 Conforming to: POSIX.1-2001 and later.

 See also: mknod(2), stat(2)

 div_t

 Include: <stdlib.h>.

 typedef struct {

 int quot; /* Quotient */

 int rem; /* Remainder */

 } div_t;

 It is the type of the value returned by the div(3) function.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: div(3)

 double_t Page 2/20

 Include: <math.h>.

 The implementation's most efficient floating type at least as

 wide as double. Its type depends on the value of the macro

 FLT_EVAL_METHOD (defined in <float.h>):

 0 double_t is double.

 1 double_t is double.

 2 double_t is long double.

 For other values of FLT_EVAL_METHOD, the type of double_t is im?

 plementation-defined.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the float_t type in this page.

 fd_set

 Include: <sys/select.h>. Alternatively, <sys/time.h>.

 A structure type that can represent a set of file descriptors.

 According to POSIX, the maximum number of file descriptors in an

 fd_set structure is the value of the macro FD_SETSIZE.

 Conforming to: POSIX.1-2001 and later.

 See also: select(2)

 fenv_t

 Include: <fenv.h>.

 This type represents the entire floating-point environment, in?

 cluding control modes and status flags; for further details, see

 fenv(3).

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: fenv(3)

 fexcept_t

 Include: <fenv.h>.

 This type represents the floating-point status flags collec?

 tively; for further details see fenv(3).

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: fenv(3)

 FILE

 Include: <stdio.h>. Alternatively, <wchar.h>. Page 3/20

 An object type used for streams.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: fclose(3), flockfile(3), fopen(3), fprintf(3),

 fread(3), fscanf(3), stdin(3), stdio(3)

 float_t

 Include: <math.h>.

 The implementation's most efficient floating type at least as

 wide as float. Its type depends on the value of the macro

 FLT_EVAL_METHOD (defined in <float.h>):

 0 float_t is float.

 1 float_t is double.

 2 float_t is long double.

 For other values of FLT_EVAL_METHOD, the type of float_t is im?

 plementation-defined.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the double_t type in this page.

 gid_t

 Include: <sys/types.h>. Alternatively, <grp.h>, <pwd.h>, <sig?

 nal.h>, <stropts.h>, <sys/ipc.h>, <sys/stat.h>, or <unistd.h>.

 A type used to hold group IDs. According to POSIX, this shall

 be an integer type.

 Conforming to: POSIX.1-2001 and later.

 See also: chown(2), getgid(2), getegid(2), getgroups(2), getres?

 gid(2), getgrnam(2), credentials(7)

 id_t

 Include: <sys/types.h>. Alternatively, <sys/resource.h>.

 A type used to hold a general identifier. According to POSIX,

 this shall be an integer type that can be used to contain a

 pid_t, uid_t, or gid_t.

 Conforming to: POSIX.1-2001 and later.

 See also: getpriority(2), waitid(2)

 imaxdiv_t

 Include: <inttypes.h>. Page 4/20

 typedef struct {

 intmax_t quot; /* Quotient */

 intmax_t rem; /* Remainder */

 } imaxdiv_t;

 It is the type of the value returned by the imaxdiv(3) function.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: imaxdiv(3)

 intmax_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 A signed integer type capable of representing any value of any

 signed integer type supported by the implementation. According

 to the C language standard, it shall be capable of storing val?

 ues in the range [INTMAX_MIN, INTMAX_MAX].

 The macro INTMAX_C() expands its argument to an integer constant

 of type intmax_t.

 The length modifier for intmax_t for the printf(3) and the

 scanf(3) families of functions is j; resulting commonly in %jd

 or %ji for printing intmax_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 Bugs: intmax_t is not large enough to represent values of type

 __int128 in implementations where __int128 is defined and long

 long is less than 128 bits wide.

 See also: the uintmax_t type in this page.

 intN_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 int8_t, int16_t, int32_t, int64_t

 A signed integer type of a fixed width of exactly N bits, N be?

 ing the value specified in its type name. According to the C

 language standard, they shall be capable of storing values in

 the range [INTN_MIN, INTN_MAX], substituting N by the appropri?

 ate number.

 According to POSIX, int8_t, int16_t, and int32_t are required;

 int64_t is only required in implementations that provide integer Page 5/20

 types with width 64; and all other types of this form are op?

 tional.

 The length modifiers for the intN_t types for the printf(3) fam?

 ily of functions are expanded by macros of the forms PRIdN and

 PRIiN (defined in <inttypes.h>); resulting for example in

 %"PRId64" or %"PRIi64" for printing int64_t values. The length

 modifiers for the intN_t types for the scanf(3) family of func?

 tions are expanded by macros of the forms SCNdN and SCNiN, (de?

 fined in <inttypes.h>); resulting for example in %"SCNd8" or

 %"SCNi8" for scanning int8_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the intmax_t, uintN_t, and uintmax_t types in this

 page.

 intptr_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 A signed integer type such that any valid (void *) value can be

 converted to this type and back. According to the C language

 standard, it shall be capable of storing values in the range

 [INTPTR_MIN, INTPTR_MAX].

 The length modifier for intptr_t for the printf(3) family of

 functions is expanded by the macros PRIdPTR and PRIiPTR (defined

 in <inttypes.h>); resulting commonly in %"PRIdPTR" or %"PRIiPTR"

 for printing intptr_t values. The length modifier for intptr_t

 for the scanf(3) family of functions is expanded by the macros

 SCNdPTR and SCNiPTR, (defined in <inttypes.h>); resulting com?

 monly in %"SCNdPTR" or %"SCNiPTR" for scanning intptr_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the uintptr_t and void * types in this page.

 lconv

 Include: <locale.h>.

 struct lconv { /* Values in the "C" locale: */

 char *decimal_point; /* "." */

 char *thousands_sep; /* "" */ Page 6/20

 char *grouping; /* "" */

 char *mon_decimal_point; /* "" */

 char *mon_thousands_sep; /* "" */

 char *mon_grouping; /* "" */

 char *positive_sign; /* "" */

 char *negative_sign; /* "" */

 char *currency_symbol; /* "" */

 char frac_digits; /* CHAR_MAX */

 char p_cs_precedes; /* CHAR_MAX */

 char n_cs_precedes; /* CHAR_MAX */

 char p_sep_by_space; /* CHAR_MAX */

 char n_sep_by_space; /* CHAR_MAX */

 char p_sign_posn; /* CHAR_MAX */

 char n_sign_posn; /* CHAR_MAX */

 char *int_curr_symbol; /* "" */

 char int_frac_digits; /* CHAR_MAX */

 char int_p_cs_precedes; /* CHAR_MAX */

 char int_n_cs_precedes; /* CHAR_MAX */

 char int_p_sep_by_space; /* CHAR_MAX */

 char int_n_sep_by_space; /* CHAR_MAX */

 char int_p_sign_posn; /* CHAR_MAX */

 char int_n_sign_posn; /* CHAR_MAX */

 };

 Contains members related to the formatting of numeric values.

 In the "C" locale, its members have the values shown in the com?

 ments above.

 Conforming to: C11 and later; POSIX.1-2001 and later.

 See also: setlocale(3), localeconv(3), charsets(5), locale(7)

 ldiv_t

 Include: <stdlib.h>.

 typedef struct {

 long quot; /* Quotient */

 long rem; /* Remainder */ Page 7/20

 } ldiv_t;

 It is the type of the value returned by the ldiv(3) function.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: ldiv(3)

 lldiv_t

 Include: <stdlib.h>.

 typedef struct {

 long long quot; /* Quotient */

 long long rem; /* Remainder */

 } lldiv_t;

 It is the type of the value returned by the lldiv(3) function.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: lldiv(3)

 off_t

 Include: <sys/types.h>. Alternatively, <aio.h>, <fcntl.h>,

 <stdio.h>, <sys/mman.h>, <sys/stat.h.h>, or <unistd.h>.

 Used for file sizes. According to POSIX, this shall be a signed

 integer type.

 Versions: <aio.h> and <stdio.h> define off_t since POSIX.1-2008.

 Conforming to: POSIX.1-2001 and later.

 Notes: On some architectures, the width of this type can be con?

 trolled with the feature test macro _FILE_OFFSET_BITS.

 See also: lseek(2), mmap(2), posix_fadvise(2), pread(2), trun?

 cate(2), fseeko(3), lockf(3), posix_fallocate(3), fea?

 ture_test_macros(7)

 pid_t

 Include: <sys/types.h>. Alternatively, <fcntl.h>, <sched.h>,

 <signal.h>, <spawn.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>,

 <sys/wait.h>, <termios.h>, <time.h>, <unistd.h>, or <utmpx.h>.

 This type is used for storing process IDs, process group IDs,

 and session IDs. According to POSIX, it shall be a signed inte?

 ger type, and the implementation shall support one or more pro?

 gramming environments where the width of pid_t is no greater Page 8/20

 than the width of the type long.

 Conforming to: POSIX.1-2001 and later.

 See also: fork(2), getpid(2), getppid(2), getsid(2), gettid(2),

 getpgid(2), kill(2), pidfd_open(2), sched_setscheduler(2), wait?

 pid(2), sigqueue(3), credentials(7),

 ptrdiff_t

 Include: <stddef.h>.

 Used for a count of elements, and array indices. It is the re?

 sult of subtracting two pointers. According to the C language

 standard, it shall be a signed integer type capable of storing

 values in the range [PTRDIFF_MIN, PTRDIFF_MAX].

 The length modifier for ptrdiff_t for the printf(3) and the

 scanf(3) families of functions is t; resulting commonly in %td

 or %ti for printing ptrdiff_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the size_t and ssize_t types in this page.

 regex_t

 Include: <regex.h>.

 typedef struct {

 size_t re_nsub; /* Number of parenthesized subexpressions. */

 } regex_t;

 This is a structure type used in regular expression matching.

 It holds a compiled regular expression, compiled with reg?

 comp(3).

 Conforming to: POSIX.1-2001 and later.

 See also: regex(3)

 regmatch_t

 Include: <regex.h>.

 typedef struct {

 regoff_t rm_so; /* Byte offset from start of string

 to start of substring */

 regoff_t rm_eo; /* Byte offset from start of string of

 the first character after the end of Page 9/20

 substring */

 } regmatch_t;

 This is a structure type used in regular expression matching.

 Conforming to: POSIX.1-2001 and later.

 See also: regexec(3)

 regoff_t

 Include: <regex.h>.

 According to POSIX, it shall be a signed integer type capable of

 storing the largest value that can be stored in either a

 ptrdiff_t type or a ssize_t type.

 Versions: Prior to POSIX.1-2008, the type was capable of storing

 the largest value that can be stored in either an off_t type or

 a ssize_t type.

 Conforming to: POSIX.1-2001 and later.

 See also: the regmatch_t structure and the ptrdiff_t and ssize_t

 types in this page.

 sigevent

 Include: <signal.h>. Alternatively, <aio.h>, <mqueue.h>, or

 <time.h>.

 struct sigevent {

 int sigev_notify; /* Notification type */

 int sigev_signo; /* Signal number */

 union sigval sigev_value; /* Signal value */

 void (*sigev_notify_function)(union sigval);

 /* Notification function */

 pthread_attr_t *sigev_notify_attributes;

 /* Notification attributes */

 };

 For further details about this type, see sigevent(7).

 Versions: <aio.h> and <time.h> define sigevent since

 POSIX.1-2008.

 Conforming to: POSIX.1-2001 and later.

 See also: timer_create(2), getaddrinfo_a(3), lio_listio(3), Page 10/20

 mq_notify(3)

 See also the aiocb structure in this page.

 siginfo_t

 Include: <signal.h>. Alternatively, <sys/wait.h>.

 typedef struct {

 int si_signo; /* Signal number */

 int si_code; /* Signal code */

 pid_t si_pid; /* Sending process ID */

 uid_t si_uid; /* Real user ID of sending process */

 void *si_addr; /* Address of faulting instruction */

 int si_status; /* Exit value or signal */

 union sigval si_value; /* Signal value */

 } siginfo_t;

 Information associated with a signal. For further details on

 this structure (including additional, Linux-specific fields),

 see sigaction(2).

 Conforming to: POSIX.1-2001 and later.

 See also: pidfd_send_signal(2), rt_sigqueueinfo(2), sigac?

 tion(2), sigwaitinfo(2), psiginfo(3)

 sigset_t

 Include: <signal.h>. Alternatively, <spawn.h>, or <sys/se?

 lect.h>.

 This is a type that represents a set of signals. According to

 POSIX, this shall be an integer or structure type.

 Conforming to: POSIX.1-2001 and later.

 See also: epoll_pwait(2), ppoll(2), pselect(2), sigaction(2),

 signalfd(2), sigpending(2), sigprocmask(2), sigsuspend(2), sig?

 waitinfo(2), signal(7)

 sigval

 Include: <signal.h>.

 union sigval {

 int sigval_int; /* Integer value */

 void *sigval_ptr; /* Pointer value */ Page 11/20

 };

 Data passed with a signal.

 Conforming to: POSIX.1-2001 and later.

 See also: pthread_sigqueue(3), sigqueue(3), sigevent(7)

 See also the sigevent structure and the siginfo_t type in this

 page.

 size_t

 Include: <stddef.h> or <sys/types.h>. Alternatively, <aio.h>,

 <glob.h>, <grp.h>, <iconv.h>, <monetary.h>, <mqueue.h>,

 <ndbm.h>, <pwd.h>, <regex.h>, <search.h>, <signal.h>, <stdio.h>,

 <stdlib.h>, <string.h>, <strings.h>, <sys/mman.h>, <sys/msg.h>,

 <sys/sem.h>, <sys/shm.h>, <sys/socket.h>, <sys/uio.h>, <time.h>,

 <unistd.h>, <wchar.h>, or <wordexp.h>.

 Used for a count of bytes. It is the result of the sizeof oper?

 ator. According to the C language standard, it shall be an un?

 signed integer type capable of storing values in the range [0,

 SIZE_MAX]. According to POSIX, the implementation shall support

 one or more programming environments where the width of size_t

 is no greater than the width of the type long.

 The length modifier for size_t for the printf(3) and the

 scanf(3) families of functions is z; resulting commonly in %zu

 or %zx for printing size_t values.

 Versions: <aio.h>, <glob.h>, <grp.h>, <iconv.h>, <mqueue.h>,

 <pwd.h>, <signal.h>, and <sys/socket.h> define size_t since

 POSIX.1-2008.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: read(2), write(2), fread(3), fwrite(3), memcmp(3),

 memcpy(3), memset(3), offsetof(3)

 See also the ptrdiff_t and ssize_t types in this page.

 ssize_t

 Include: <sys/types.h>. Alternatively, <aio.h>, <monetary.h>,

 <mqueue.h>, <stdio.h>, <sys/msg.h>, <sys/socket.h>, <sys/uio.h>,

 or <unistd.h>. Page 12/20

 Used for a count of bytes or an error indication. According to

 POSIX, it shall be a signed integer type capable of storing val?

 ues at least in the range [-1, SSIZE_MAX], and the implementa?

 tion shall support one or more programming environments where

 the width of ssize_t is no greater than the width of the type

 long.

 Glibc and most other implementations provide a length modifier

 for ssize_t for the printf(3) and the scanf(3) families of func?

 tions, which is z; resulting commonly in %zd or %zi for printing

 ssize_t values. Although z works for ssize_t on most implemen?

 tations, portable POSIX programs should avoid using it?for exam?

 ple, by converting the value to intmax_t and using its length

 modifier (j).

 Conforming to: POSIX.1-2001 and later.

 See also: read(2), readlink(2), readv(2), recv(2), send(2),

 write(2)

 See also the ptrdiff_t and size_t types in this page.

 suseconds_t

 Include: <sys/types.h>. Alternatively, <sys/select.h>, or

 <sys/time.h>.

 Used for time in microseconds. According to POSIX, it shall be

 a signed integer type capable of storing values at least in the

 range [-1, 1000000], and the implementation shall support one or

 more programming environments where the width of suseconds_t is

 no greater than the width of the type long.

 Conforming to: POSIX.1-2001 and later.

 See also: the timeval structure in this page.

 time_t

 Include: <time.h> or <sys/types.h>. Alternatively, <sched.h>,

 <sys/msg.h>, <sys/select.h>, <sys/sem.h>, <sys/shm.h>,

 <sys/stat.h>, <sys/time.h>, or <utime.h>.

 Used for time in seconds. According to POSIX, it shall be an

 integer type. Page 13/20

 Versions: <sched.h> defines time_t since POSIX.1-2008.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: stime(2), time(2), ctime(3), difftime(3)

 timer_t

 Include: <sys/types.h>. Alternatively, <time.h>.

 Used for timer ID returned by timer_create(2). According to

 POSIX, there are no defined comparison or assignment operators

 for this type.

 Conforming to: POSIX.1-2001 and later.

 See also: timer_create(2), timer_delete(2), timer_getoverrun(2),

 timer_settime(2)

 timespec

 Include: <time.h>. Alternatively, <aio.h>, <mqueue.h>,

 <sched.h>, <signal.h>, <sys/select.h>, or <sys/stat.h>.

 struct timespec {

 time_t tv_sec; /* Seconds */

 long tv_nsec; /* Nanoseconds */

 };

 Describes times in seconds and nanoseconds.

 Conforming to: C11 and later; POSIX.1-2001 and later.

 See also: clock_gettime(2), clock_nanosleep(2), nanosleep(2),

 timerfd_gettime(2), timer_gettime(2)

 timeval

 Include: <sys/time.h>. Alternatively, <sys/resource.h>,

 <sys/select.h>, or <utmpx.h>.

 struct timeval {

 time_t tv_sec; /* Seconds */

 suseconds_t tv_usec; /* Microseconds */

 };

 Describes times in seconds and microseconds.

 Conforming to: POSIX.1-2001 and later.

 See also: gettimeofday(2), select(2), utimes(2), adjtime(3), fu?

 times(3), timeradd(3) Page 14/20

 uid_t

 Include: <sys/types.h>. Alternatively, <pwd.h>, <signal.h>,

 <stropts.h>, <sys/ipc.h>, <sys/stat.h>, or <unistd.h>.

 A type used to hold user IDs. According to POSIX, this shall be

 an integer type.

 Conforming to: POSIX.1-2001 and later.

 See also: chown(2), getuid(2), geteuid(2), getresuid(2), getpw?

 nam(2), credentials(7)

 uintmax_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 An unsigned integer type capable of representing any value of

 any unsigned integer type supported by the implementation. Ac?

 cording to the C language standard, it shall be capable of stor?

 ing values in the range [0, UINTMAX_MAX].

 The macro UINTMAX_C() expands its argument to an integer con?

 stant of type uintmax_t.

 The length modifier for uintmax_t for the printf(3) and the

 scanf(3) families of functions is j; resulting commonly in %ju

 or %jx for printing uintmax_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 Bugs: uintmax_t is not large enough to represent values of type

 unsigned __int128 in implementations where unsigned __int128 is

 defined and unsigned long long is less than 128 bits wide.

 See also: the intmax_t type in this page.

 uintN_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 uint8_t, uint16_t, uint32_t, uint64_t

 An unsigned integer type of a fixed width of exactly N bits, N

 being the value specified in its type name. According to the C

 language standard, they shall be capable of storing values in

 the range [0, UINTN_MAX], substituting N by the appropriate num?

 ber.

 According to POSIX, uint8_t, uint16_t, and uint32_t are re? Page 15/20

 quired; uint64_t is only required in implementations that pro?

 vide integer types with width 64; and all other types of this

 form are optional.

 The length modifiers for the uintN_t types for the printf(3)

 family of functions are expanded by macros of the forms PRIuN,

 PRIoN, PRIxN, and PRIXN (defined in <inttypes.h>); resulting for

 example in %"PRIu32" or %"PRIx32" for printing uint32_t values.

 The length modifiers for the uintN_t types for the scanf(3) fam?

 ily of functions are expanded by macros of the forms SCNuN, SC?

 NoN, SCNxN, and SCNXN (defined in <inttypes.h>); resulting for

 example in %"SCNu16" or %"SCNx16" for scanning uint16_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the intmax_t, intN_t, and uintmax_t types in this

 page.

 uintptr_t

 Include: <stdint.h>. Alternatively, <inttypes.h>.

 An unsigned integer type such that any valid (void *) value can

 be converted to this type and back. According to the C language

 standard, it shall be capable of storing values in the range [0,

 UINTPTR_MAX].

 The length modifier for uintptr_t for the printf(3) family of

 functions is expanded by the macros PRIuPTR, PRIoPTR, PRIxPTR,

 and PRIXPTR (defined in <inttypes.h>); resulting commonly in

 %"PRIuPTR" or %"PRIxPTR" for printing uintptr_t values. The

 length modifier for uintptr_t for the scanf(3) family of func?

 tions is expanded by the macros SCNuPTR, SCNoPTR, SCNxPTR, and

 SCNXPTR (defined in <inttypes.h>); resulting commonly in %"SC?

 NuPTR" or %"SCNxPTR" for scanning uintptr_t values.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: the intptr_t and void * types in this page.

 va_list

 Include: <stdarg>. Alternatively, <stdio.h>, or <wchar.h>.

 Used by functions with a varying number of arguments of varying Page 16/20

 types. The function must declare an object of type va_list

 which is used by the macros va_start(3), va_arg(3), va_copy(3),

 and va_end(3) to traverse the list of arguments.

 Conforming to: C99 and later; POSIX.1-2001 and later.

 See also: va_start(3), va_arg(3), va_copy(3), va_end(3)

 void *

 According to the C language standard, a pointer to any object

 type may be converted to a pointer to void and back. POSIX fur?

 ther requires that any pointer, including pointers to functions,

 may be converted to a pointer to void and back.

 Conversions from and to any other pointer type are done implic?

 itly, not requiring casts at all. Note that this feature pre?

 vents any kind of type checking: the programmer should be care?

 ful not to convert a void * value to a type incompatible to that

 of the underlying data, because that would result in undefined

 behavior.

 This type is useful in function parameters and return value to

 allow passing values of any type. The function will typically

 use some mechanism to know the real type of the data being

 passed via a pointer to void.

 A value of this type can't be dereferenced, as it would give a

 value of type void, which is not possible. Likewise, pointer

 arithmetic is not possible with this type. However, in GNU C,

 pointer arithmetic is allowed as an extension to the standard;

 this is done by treating the size of a void or of a function as

 1. A consequence of this is that sizeof is also allowed on void

 and on function types, and returns 1.

 The conversion specifier for void * for the printf(3) and the

 scanf(3) families of functions is p.

 Versions: The POSIX requirement about compatibility between void

 * and function pointers was added in POSIX.1-2008 Technical Cor?

 rigendum 1 (2013).

 Conforming to: C99 and later; POSIX.1-2001 and later. Page 17/20

 See also: malloc(3), memcmp(3), memcpy(3), memset(3)

 See also the intptr_t and uintptr_t types in this page.

NOTES

 The structures described in this manual page shall contain, at least,

 the members shown in their definition, in no particular order.

 Most of the integer types described in this page don't have a corre?

 sponding length modifier for the printf(3) and the scanf(3) families of

 functions. To print a value of an integer type that doesn't have a

 length modifier, it should be converted to intmax_t or uintmax_t by an

 explicit cast. To scan into a variable of an integer type that doesn't

 have a length modifier, an intermediate temporary variable of type int?

 max_t or uintmax_t should be used. When copying from the temporary

 variable to the destination variable, the value could overflow. If the

 type has upper and lower limits, the user should check that the value

 is within those limits, before actually copying the value. The example

 below shows how these conversions should be done.

 Conventions used in this page

 In "Conforming to" we only concern ourselves with C99 and later and

 POSIX.1-2001 and later. Some types may be specified in earlier ver?

 sions of one of these standards, but in the interests of simplicity we

 omit details from earlier standards.

 In "Include", we first note the "primary" header(s) that define the

 type according to either the C or POSIX.1 standards. Under "Alterna?

 tively", we note additional headers that the standards specify shall

 define the type.

EXAMPLES

 The program shown below scans from a string and prints a value stored

 in a variable of an integer type that doesn't have a length modifier.

 The appropriate conversions from and to intmax_t, and the appropriate

 range checks, are used as explained in the notes section above.

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h> Page 18/20

 #include <sys/types.h>

 int

 main (void)

 {

 static const char *const str = "500000 us in half a second";

 suseconds_t us;

 intmax_t tmp;

 /* Scan the number from the string into the temporary variable */

 sscanf(str, "%jd", &tmp);

 /* Check that the value is within the valid range of suseconds_t */

 if (tmp < -1 || tmp > 1000000) {

 fprintf(stderr, "Scanned value outside valid range!\n");

 exit(EXIT_FAILURE);

 }

 /* Copy the value to the suseconds_t variable 'us' */

 us = tmp;

 /* Even though suseconds_t can hold the value -1, this isn't

 a sensible number of microseconds */

 if (us < 0) {

 fprintf(stderr, "Scanned value shouldn't be negative!\n");

 exit(EXIT_FAILURE);

 }

 /* Print the value */

 printf("There are %jd microseconds in half a second.\n",

 (intmax_t) us);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 feature_test_macros(7), standards(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 19/20

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SYSTEM_DATA_TYPES(7)

Page 20/20

