
Rocky Enterprise Linux 9.2 Manual Pages on command 'newlocale.3'

$ man newlocale.3

NEWLOCALE(3) Linux Programmer's Manual NEWLOCALE(3)

NAME

 newlocale, freelocale - create, modify, and free a locale object

SYNOPSIS

 #include <locale.h>

 locale_t newlocale(int category_mask, const char *locale,

 locale_t base);

 void freelocale(locale_t locobj);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 newlocale(), freelocale():

 Since glibc 2.10:

 _XOPEN_SOURCE >= 700

 Before glibc 2.10:

 _GNU_SOURCE

DESCRIPTION

 The newlocale() function creates a new locale object, or modifies an

 existing object, returning a reference to the new or modified object as

 the function result. Whether the call creates a new object or modifies Page 1/6

 an existing object is determined by the value of base:

 * If base is (locale_t) 0, a new object is created.

 * If base refers to valid existing locale object (i.e., an object re?

 turned by a previous call to newlocale() or duplocale(3)), then that

 object is modified by the call. If the call is successful, the con?

 tents of base are unspecified (in particular, the object referred to

 by base may be freed, and a new object created). Therefore, the

 caller should ensure that it stops using base before the call to

 newlocale(), and should subsequently refer to the modified object

 via the reference returned as the function result. If the call

 fails, the contents of base remain valid and unchanged.

 If base is the special locale object LC_GLOBAL_LOCALE (see duplo?

 cale(3)), or is not (locale_t) 0 and is not a valid locale object han?

 dle, the behavior is undefined.

 The category_mask argument is a bit mask that specifies the locale cat?

 egories that are to be set in a newly created locale object or modified

 in an existing object. The mask is constructed by a bitwise OR of the

 constants LC_ADDRESS_MASK, LC_CTYPE_MASK, LC_COLLATE_MASK, LC_IDENTIFI?

 CATION_MASK, LC_MEASUREMENT_MASK, LC_MESSAGES_MASK, LC_MONETARY_MASK,

 LC_NUMERIC_MASK, LC_NAME_MASK, LC_PAPER_MASK, LC_TELEPHONE_MASK, and

 LC_TIME_MASK. Alternatively, the mask can be specified as LC_ALL_MASK,

 which is equivalent to ORing all of the preceding constants.

 For each category specified in category_mask, the locale data from lo?

 cale will be used in the object returned by newlocale(). If a new lo?

 cale object is being created, data for all categories not specified in

 category_mask is taken from the default ("POSIX") locale.

 The following preset values of locale are defined for all categories

 that can be specified in category_mask:

 "POSIX"

 A minimal locale environment for C language programs.

 "C" Equivalent to "POSIX".

 "" An implementation-defined native environment corresponding to

 the values of the LC_* and LANG environment variables (see lo? Page 2/6

 cale(7)).

 freelocale()

 The freelocale() function deallocates the resources associated with lo?

 cobj, a locale object previously returned by a call to newlocale() or

 duplocale(3). If locobj is LC_GLOBAL_LOCALE or is not valid locale ob?

 ject handle, the results are undefined.

 Once a locale object has been freed, the program should make no further

 use of it.

RETURN VALUE

 On success, newlocale() returns a handle that can be used in calls to

 duplocale(3), freelocale(), and other functions that take a locale_t

 argument. On error, newlocale() returns (locale_t) 0, and sets errno

 to indicate the cause of the error.

ERRORS

 EINVAL One or more bits in category_mask do not correspond to a valid

 locale category.

 EINVAL locale is NULL.

 ENOENT locale is not a string pointer referring to a valid locale.

 ENOMEM Insufficient memory to create a locale object.

VERSIONS

 The newlocale() and freelocale() functions first appeared in version

 2.3 of the GNU C library.

CONFORMING TO

 POSIX.1-2008.

NOTES

 Each locale object created by newlocale() should be deallocated using

 freelocale().

EXAMPLES

 The program below takes up to two command-line arguments, which each

 identify locales. The first argument is required, and is used to set

 the LC_NUMERIC category in a locale object created using newlocale().

 The second command-line argument is optional; if it is present, it is

 used to set the LC_TIME category of the locale object. Page 3/6

 Having created and initialized the locale object, the program then ap?

 plies it using uselocale(3), and then tests the effect of the locale

 changes by:

 1. Displaying a floating-point number with a fractional part. This

 output will be affected by the LC_NUMERIC setting. In many Euro?

 pean-language locales, the fractional part of the number is sepa?

 rated from the integer part using a comma, rather than a period.

 2. Displaying the date. The format and language of the output will be

 affected by the LC_TIME setting.

 The following shell sessions show some example runs of this program.

 Set the LC_NUMERIC category to fr_FR (French):

 $./a.out fr_FR

 123456,789

 Fri Mar 7 00:25:08 2014

 Set the LC_NUMERIC category to fr_FR (French), and the LC_TIME category

 to it_IT (Italian):

 $./a.out fr_FR it_IT

 123456,789

 ven 07 mar 2014 00:26:01 CET

 Specify the LC_TIME setting as an empty string, which causes the value

 to be taken from environment variable settings (which, here, specify

 mi_NZ, New Zealand M?ori):

 $ LC_ALL=mi_NZ ./a.out fr_FR ""

 123456,789

 Te Paraire, te 07 o Pout?-te-rangi, 2014 00:38:44 CET

 Program source

 #define _XOPEN_SOURCE 700

 #include <stdio.h>

 #include <stdlib.h>

 #include <locale.h>

 #include <time.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0) Page 4/6

 int

 main(int argc, char *argv[])

 {

 char buf[100];

 time_t t;

 size_t s;

 struct tm *tm;

 locale_t loc, nloc;

 if (argc < 2) {

 fprintf(stderr, "Usage: %s locale1 [locale2]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /* Create a new locale object, taking the LC_NUMERIC settings

 from the locale specified in argv[1] */

 loc = newlocale(LC_NUMERIC_MASK, argv[1], (locale_t) 0);

 if (loc == (locale_t) 0)

 errExit("newlocale");

 /* If a second command-line argument was specified, modify the

 locale object to take the LC_TIME settings from the locale

 specified in argv[2]. We assign the result of this newlocale()

 call to 'nloc' rather than 'loc', since in some cases, we might

 want to preserve 'loc' if this call fails. */

 if (argc > 2) {

 nloc = newlocale(LC_TIME_MASK, argv[2], loc);

 if (nloc == (locale_t) 0)

 errExit("newlocale");

 loc = nloc;

 }

 /* Apply the newly created locale to this thread */

 uselocale(loc);

 /* Test effect of LC_NUMERIC */

 printf("%8.3f\n", 123456.789);

 /* Test effect of LC_TIME */ Page 5/6

 t = time(NULL);

 tm = localtime(&t);

 if (tm == NULL)

 errExit("time");

 s = strftime(buf, sizeof(buf), "%c", tm);

 if (s == 0)

 errExit("strftime");

 printf("%s\n", buf);

 /* Free the locale object */

 uselocale(LC_GLOBAL_HANDLE); /* So 'loc' is no longer in use */

 freelocale(loc);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 locale(1), duplocale(3), setlocale(3), uselocale(3), locale(5), lo?

 cale(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 NEWLOCALE(3)

Page 6/6

