
Rocky Enterprise Linux 9.2 Manual Pages on command 'nasm.1'

$ man nasm.1

NASM(1) The Netwide Assembler Project NASM(1)

NAME

 nasm - the Netwide Assembler, a portable 80x86 assembler

SYNOPSIS

 nasm [-@ response file] [-f format] [-o outfile] [-l listfile]

 [options...] filename

DESCRIPTION

 The nasm command assembles the file filename and directs output to the

 file outfile if specified. If outfile is not specified, nasm will

 derive a default output file name from the name of its input file,

 usually by appending ?.o? or ?.obj?, or by removing all extensions for

 a raw binary file. Failing that, the output file name will be

 ?nasm.out?.

OPTIONS

 -@ filename

 Causes nasm to process options from filename as if they were

 included on the command line.

 -a Page 1/8

 Causes nasm to assemble the given input file without first applying

 the macro preprocessor.

 -D|-d macro[=value]

 Pre-defines a single-line macro.

 -E|-e

 Causes nasm to preprocess the given input file, and write the

 output to stdout (or the specified output file name), and not

 actually assemble anything.

 -f format

 Specifies the output file format. To see a list of valid output

 formats, use the -hf option.

 -F format

 Specifies the debug information format. To see a list of valid

 output formats, use the -y option (for example -felf -y).

 -g

 Causes nasm to generate debug information.

 -gformat

 Equivalent to -g -F format.

 -h

 Causes nasm to exit immediately, after giving a summary of its

 invocation options.

 -hf

 Same as -h , but also lists all valid output formats.

 -I|-i directory

 Adds a directory to the search path for include files. The

 directory specification must include the trailing slash, as it will

 be directly prepended to the name of the include file.

 -l listfile

 Causes an assembly listing to be directed to the given file, in

 which the original source is displayed on the right hand side (plus

 the source for included files and the expansions of multi-line

 macros) and the generated code is shown in hex on the left.

 -M Page 2/8

 Causes nasm to output Makefile-style dependencies to stdout; normal

 output is suppressed.

 -MG file

 Same as -M but assumes that missing Makefile dependecies are

 generated and added to dependency list without a prefix.

 -MF file

 Output Makefile-style dependencies to the specified file.

 -MD file

 Same as a combination of -M and -MF options.

 -MT file

 Override the default name of the dependency target dependency

 target name. This is normally the same as the output filename,

 specified by the -o option.

 -MQ file

 The same as -MT except it tries to quote characters that have

 special meaning in Makefile syntax. This is not foolproof, as not

 all characters with special meaning are quotable in Make.

 -MP

 Emit phony target.

 -O number

 Optimize branch offsets.

 ? -O0: No optimization

 ? -O1: Minimal optimization

 ? -Ox: Multipass optimization (default)

 -o outfile

 Specifies a precise name for the output file, overriding nasm's

 default means of determining it.

 -P|-p file

 Specifies a file to be pre-included, before the main source file

 starts to be processed.

 -s

 Causes nasm to send its error messages and/or help text to stdout

 instead of stderr. Page 3/8

 -t

 Causes nasm to assemble in SciTech TASM compatible mode.

 -U|-u macro

 Undefines a single-line macro.

 -v

 Causes nasm to exit immediately, after displaying its version

 number.

 *-W[no-]foo'

 Causes nasm to enable or disable certain classes of warning

 messages, in gcc-like style, for example -Wlabel-orphan or

 -Wno-orphan-labels.

 -w[+-]foo

 Causes nasm to enable or disable certain classes of warning

 messages, for example -w+label-orphan or -w-macro-params.

 -X format

 Specifies error reporting format (gnu or vc).

 -y

 Causes nasm to list supported debug formats.

 -Z filename

 Causes nasm to redirect error messages to filename. This option

 exists to support operating systems on which stderr is not easily

 redirected.

 --prefix, --postfix

 Prepend or append (respectively) the given argument to all global

 or extern variables.

SYNTAX

 This man page does not fully describe the syntax of nasm's assembly

 language, but does give a summary of the differences from other

 assemblers.

 Registers have no leading ?%? sign, unlike gas, and floating-point

 stack registers are referred to as st0, st1, and so on.

 Floating-point instructions may use either the single-operand form or

 the double. A TO keyword is provided; thus, one could either write Page 4/8

 fadd st0,st1

 fadd st1,st0

 or one could use the alternative single-operand forms

 fadd st1

 fadd to st1

 Uninitialised storage is reserved using the RESB, RESW, RESD, RESQ,

 REST and RESO pseudo-opcodes, each taking one parameter which gives the

 number of bytes, words, doublewords, quadwords or ten-byte words to

 reserve.

 Repetition of data items is not done by the DUP keyword as seen in DOS

 assemblers, but by the use of the TIMES prefix, like this:

 message: times 3 db 'abc'

 times 64-$+message db 0

 which defines the string abcabcabc, followed by the right number of

 zero bytes to make the total length up to 64 bytes.

 Symbol references are always understood to be immediate (i.e. the

 address of the symbol), unless square brackets are used, in which case

 the contents of the memory location are used. Thus:

 mov ax,wordvar

 loads AX with the address of the variable wordvar, whereas

 mov ax,[wordvar]

 mov ax,[wordvar+1]

 mov ax,[es:wordvar+bx]

 all refer to the contents of memory locations. The syntaxes

 mov ax,es:wordvar[bx]

 es mov ax,wordvar[1]

 are not legal at all, although the use of a segment register name as an

 instruction prefix is valid, and can be used with instructions such as

 LODSB which can?t be overridden any other way.

 Constants may be expressed numerically in most formats: a trailing H, Q

 or B denotes hex, octal or binary respectively, and a leading ?0x? or

 ?$? denotes hex as well. Leading zeros are not treated specially at

 all. Character constants may be enclosed in single or double quotes; Page 5/8

 there is no escape character. The ordering is little-endian (reversed),

 so that the character constant 'abcd' denotes 0x64636261 and not

 0x61626364.

 Local labels begin with a period, and their ?locality? is granted by

 the assembler prepending the name of the previous non-local symbol.

 Thus declaring a label ?.loop? after a label ?label? has actually

 defined a symbol called ?label.loop?.

DIRECTIVES

 SECTION name or SEGMENT name causes nasm to direct all following code

 to the named section. Section names vary with output file format,

 although most formats support the names .text, .data and .bss. (The

 exception is the obj format, in which all segments are user-definable.)

 ABSOLUTE address causes nasm to position its notional assembly point at

 an absolute address: so no code or data may be generated, but you can

 use RESB, RESW and RESD to move the assembly point further on, and you

 can define labels. So this directive may be used to define data

 structures. When you have finished doing absolute assembly, you must

 issue another SECTION directive to return to normal assembly.

 BITS 16, BITS 32 or BITS 64 switches the default processor mode for

 which nasm is generating code: it is equivalent to USE16 or USE32 in

 DOS assemblers.

 EXTERN symbol and GLOBAL symbol import and export symbol definitions,

 respectively, from and to other modules. Note that the GLOBAL directive

 must appear before the definition of the symbol it refers to.

 STRUC strucname and ENDSTRUC, when used to bracket a number of RESB,

 RESW or similar instructions, define a data structure. In addition to

 defining the offsets of the structure members, the construct also

 defines a symbol for the size of the structure, which is simply the

 structure name with size tacked on to the end.

FORMAT-SPECIFIC DIRECTIVES

 ORG address is used by the bin flat-form binary output format, and

 specifies the address at which the output code will eventually be

 loaded. Page 6/8

 GROUP grpname seg1 seg2... is used by the obj (Microsoft 16-bit) output

 format, and defines segment groups. This format also uses UPPERCASE,

 which directs that all segment, group and symbol names output to the

 object file should be in uppercase. Note that the actual assembly is

 still case sensitive.

 LIBRARY libname is used by the rdf output format, and causes a

 dependency record to be written to the output file which indicates that

 the program requires a certain library in order to run.

MACRO PREPROCESSOR

 Single-line macros are defined using the %define or %idefine commands,

 in a similar fashion to the C preprocessor. They can be overloaded with

 respect to number of parameters, although defining a macro with no

 parameters prevents the definition of any macro with the same name

 taking parameters, and vice versa. %define defines macros whose names

 match case-sensitively, whereas %idefine defines case-insensitive

 macros.

 Multi-line macros are defined using %macro and %imacro (the distinction

 is the same as that between %define and %idefine), whose syntax is as

 follows

 %macro name minprm[-maxprm][+][.nolist] [defaults]

 <some lines of macro expansion text>

 %endmacro

 Again, these macros may be overloaded. The trailing plus sign indicates

 that any parameters after the last one get subsumed, with their

 separating commas, into the last parameter. The defaults part can be

 used to specify defaults for unspecified macro parameters after

 minparam. %endm is a valid synonym for %endmacro.

 To refer to the macro parameters within a macro expansion, you use %1,

 %2 and so on. You can also enforce that a macro parameter should

 contain a condition code by using %+1, and you can invert the condition

 code by using %-1. You can also define a label specific to a macro

 invocation by prefixing it with a double ?%? sign.

 Files can be included using the %include directive, which works like C. Page 7/8

 The preprocessor has a ?context stack?, which may be used by one macro

 to store information that a later one will retrieve. You can push a

 context on the stack using %push, remove one using %pop, and change the

 name of the top context (without disturbing any associated definitions)

 using %repl. Labels and %define macros specific to the top context may

 be defined by prefixing their names with %$, and things specific to the

 next context down with %$$, and so on.

 Conditional assembly is done by means of %ifdef, %ifndef, %else and

 %endif as in C. (Except that %ifdef can accept several putative macro

 names, and will evaluate TRUE if any of them is defined.) In addition,

 the directives %ifctx and %ifnctx can be used to condition on the name

 of the top context on the context stack. The obvious set of ?else-if?

 directives, %elifdef, %elifndef, %elifctx and %elifnctx are also

 supported.

BUGS

 Please report bugs through the bug tracker function at http://nasm.us.

SEE ALSO

 as(1), ld(1).

NASM 07/17/2020 NASM(1)

Page 8/8

