
Rocky Enterprise Linux 9.2 Manual Pages on command 'name_to_handle_at.2'

$ man name_to_handle_at.2

OPEN_BY_HANDLE_AT(2) Linux Programmer's Manual OPEN_BY_HANDLE_AT(2)

NAME

 name_to_handle_at, open_by_handle_at - obtain handle for a pathname and

 open file via a handle

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 int name_to_handle_at(int dirfd, const char *pathname,

 struct file_handle *handle,

 int *mount_id, int flags);

 int open_by_handle_at(int mount_fd, struct file_handle *handle,

 int flags);

DESCRIPTION

 The name_to_handle_at() and open_by_handle_at() system calls split the

 functionality of openat(2) into two parts: name_to_handle_at() returns

 an opaque handle that corresponds to a specified file; open_by_han? Page 1/13

 dle_at() opens the file corresponding to a handle returned by a previ?

 ous call to name_to_handle_at() and returns an open file descriptor.

 name_to_handle_at()

 The name_to_handle_at() system call returns a file handle and a mount

 ID corresponding to the file specified by the dirfd and pathname argu?

 ments. The file handle is returned via the argument handle, which is a

 pointer to a structure of the following form:

 struct file_handle {

 unsigned int handle_bytes; /* Size of f_handle [in, out] */

 int handle_type; /* Handle type [out] */

 unsigned char f_handle[0]; /* File identifier (sized by

 caller) [out] */

 };

 It is the caller's responsibility to allocate the structure with a size

 large enough to hold the handle returned in f_handle. Before the call,

 the handle_bytes field should be initialized to contain the allocated

 size for f_handle. (The constant MAX_HANDLE_SZ, defined in <fcntl.h>,

 specifies the maximum expected size for a file handle. It is not a

 guaranteed upper limit as future filesystems may require more space.)

 Upon successful return, the handle_bytes field is updated to contain

 the number of bytes actually written to f_handle.

 The caller can discover the required size for the file_handle structure

 by making a call in which handle->handle_bytes is zero; in this case,

 the call fails with the error EOVERFLOW and handle->handle_bytes is set

 to indicate the required size; the caller can then use this information

 to allocate a structure of the correct size (see EXAMPLES below). Some

 care is needed here as EOVERFLOW can also indicate that no file handle

 is available for this particular name in a filesystem which does nor?

 mally support file-handle lookup. This case can be detected when the

 EOVERFLOW error is returned without handle_bytes being increased.

 Other than the use of the handle_bytes field, the caller should treat

 the file_handle structure as an opaque data type: the handle_type and

 f_handle fields are needed only by a subsequent call to open_by_han? Page 2/13

 dle_at().

 The flags argument is a bit mask constructed by ORing together zero or

 more of AT_EMPTY_PATH and AT_SYMLINK_FOLLOW, described below.

 Together, the pathname and dirfd arguments identify the file for which

 a handle is to be obtained. There are four distinct cases:

 * If pathname is a nonempty string containing an absolute pathname,

 then a handle is returned for the file referred to by that pathname.

 In this case, dirfd is ignored.

 * If pathname is a nonempty string containing a relative pathname and

 dirfd has the special value AT_FDCWD, then pathname is interpreted

 relative to the current working directory of the caller, and a han?

 dle is returned for the file to which it refers.

 * If pathname is a nonempty string containing a relative pathname and

 dirfd is a file descriptor referring to a directory, then pathname

 is interpreted relative to the directory referred to by dirfd, and a

 handle is returned for the file to which it refers. (See openat(2)

 for an explanation of why "directory file descriptors" are useful.)

 * If pathname is an empty string and flags specifies the value

 AT_EMPTY_PATH, then dirfd can be an open file descriptor referring

 to any type of file, or AT_FDCWD, meaning the current working direc?

 tory, and a handle is returned for the file to which it refers.

 The mount_id argument returns an identifier for the filesystem mount

 that corresponds to pathname. This corresponds to the first field in

 one of the records in /proc/self/mountinfo. Opening the pathname in

 the fifth field of that record yields a file descriptor for the mount

 point; that file descriptor can be used in a subsequent call to

 open_by_handle_at(). mount_id is returned both for a successful call

 and for a call that results in the error EOVERFLOW.

 By default, name_to_handle_at() does not dereference pathname if it is

 a symbolic link, and thus returns a handle for the link itself. If

 AT_SYMLINK_FOLLOW is specified in flags, pathname is dereferenced if it

 is a symbolic link (so that the call returns a handle for the file re?

 ferred to by the link). Page 3/13

 name_to_handle_at() does not trigger a mount when the final component

 of the pathname is an automount point. When a filesystem supports both

 file handles and automount points, a name_to_handle_at() call on an au?

 tomount point will return with error EOVERFLOW without having increased

 handle_bytes. This can happen since Linux 4.13 with NFS when accessing

 a directory which is on a separate filesystem on the server. In this

 case, the automount can be triggered by adding a "/" to the end of the

 pathname.

 open_by_handle_at()

 The open_by_handle_at() system call opens the file referred to by han?

 dle, a file handle returned by a previous call to name_to_handle_at().

 The mount_fd argument is a file descriptor for any object (file, direc?

 tory, etc.) in the mounted filesystem with respect to which handle

 should be interpreted. The special value AT_FDCWD can be specified,

 meaning the current working directory of the caller.

 The flags argument is as for open(2). If handle refers to a symbolic

 link, the caller must specify the O_PATH flag, and the symbolic link is

 not dereferenced; the O_NOFOLLOW flag, if specified, is ignored.

 The caller must have the CAP_DAC_READ_SEARCH capability to invoke

 open_by_handle_at().

RETURN VALUE

 On success, name_to_handle_at() returns 0, and open_by_handle_at() re?

 turns a file descriptor (a nonnegative integer).

 In the event of an error, both system calls return -1 and set errno to

 indicate the cause of the error.

ERRORS

 name_to_handle_at() and open_by_handle_at() can fail for the same er?

 rors as openat(2). In addition, they can fail with the errors noted

 below.

 name_to_handle_at() can fail with the following errors:

 EFAULT pathname, mount_id, or handle points outside your accessible ad?

 dress space.

 EINVAL flags includes an invalid bit value. Page 4/13

 EINVAL handle->handle_bytes is greater than MAX_HANDLE_SZ.

 ENOENT pathname is an empty string, but AT_EMPTY_PATH was not specified

 in flags.

 ENOTDIR

 The file descriptor supplied in dirfd does not refer to a direc?

 tory, and it is not the case that both flags includes

 AT_EMPTY_PATH and pathname is an empty string.

 EOPNOTSUPP

 The filesystem does not support decoding of a pathname to a file

 handle.

 EOVERFLOW

 The handle->handle_bytes value passed into the call was too

 small. When this error occurs, handle->handle_bytes is updated

 to indicate the required size for the handle.

 open_by_handle_at() can fail with the following errors:

 EBADF mount_fd is not an open file descriptor.

 EFAULT handle points outside your accessible address space.

 EINVAL handle->handle_bytes is greater than MAX_HANDLE_SZ or is equal

 to zero.

 ELOOP handle refers to a symbolic link, but O_PATH was not specified

 in flags.

 EPERM The caller does not have the CAP_DAC_READ_SEARCH capability.

 ESTALE The specified handle is not valid. This error will occur if,

 for example, the file has been deleted.

VERSIONS

 These system calls first appeared in Linux 2.6.39. Library support is

 provided in glibc since version 2.14.

CONFORMING TO

 These system calls are nonstandard Linux extensions.

 FreeBSD has a broadly similar pair of system calls in the form of

 getfh() and openfh().

NOTES

 A file handle can be generated in one process using name_to_handle_at() Page 5/13

 and later used in a different process that calls open_by_handle_at().

 Some filesystem don't support the translation of pathnames to file han?

 dles, for example, /proc, /sys, and various network filesystems.

 A file handle may become invalid ("stale") if a file is deleted, or for

 other filesystem-specific reasons. Invalid handles are notified by an

 ESTALE error from open_by_handle_at().

 These system calls are designed for use by user-space file servers.

 For example, a user-space NFS server might generate a file handle and

 pass it to an NFS client. Later, when the client wants to open the

 file, it could pass the handle back to the server. This sort of func?

 tionality allows a user-space file server to operate in a stateless

 fashion with respect to the files it serves.

 If pathname refers to a symbolic link and flags does not specify

 AT_SYMLINK_FOLLOW, then name_to_handle_at() returns a handle for the

 link (rather than the file to which it refers). The process receiving

 the handle can later perform operations on the symbolic link by con?

 verting the handle to a file descriptor using open_by_handle_at() with

 the O_PATH flag, and then passing the file descriptor as the dirfd ar?

 gument in system calls such as readlinkat(2) and fchownat(2).

 Obtaining a persistent filesystem ID

 The mount IDs in /proc/self/mountinfo can be reused as filesystems are

 unmounted and mounted. Therefore, the mount ID returned by

 name_to_handle_at() (in *mount_id) should not be treated as a persis?

 tent identifier for the corresponding mounted filesystem. However, an

 application can use the information in the mountinfo record that corre?

 sponds to the mount ID to derive a persistent identifier.

 For example, one can use the device name in the fifth field of the

 mountinfo record to search for the corresponding device UUID via the

 symbolic links in /dev/disks/by-uuid. (A more comfortable way of ob?

 taining the UUID is to use the libblkid(3) library.) That process can

 then be reversed, using the UUID to look up the device name, and then

 obtaining the corresponding mount point, in order to produce the

 mount_fd argument used by open_by_handle_at(). Page 6/13

EXAMPLES

 The two programs below demonstrate the use of name_to_handle_at() and

 open_by_handle_at(). The first program (t_name_to_handle_at.c) uses

 name_to_handle_at() to obtain the file handle and mount ID for the file

 specified in its command-line argument; the handle and mount ID are

 written to standard output.

 The second program (t_open_by_handle_at.c) reads a mount ID and file

 handle from standard input. The program then employs open_by_han?

 dle_at() to open the file using that handle. If an optional command-

 line argument is supplied, then the mount_fd argument for open_by_han?

 dle_at() is obtained by opening the directory named in that argument.

 Otherwise, mount_fd is obtained by scanning /proc/self/mountinfo to

 find a record whose mount ID matches the mount ID read from standard

 input, and the mount directory specified in that record is opened.

 (These programs do not deal with the fact that mount IDs are not per?

 sistent.)

 The following shell session demonstrates the use of these two programs:

 $ echo 'Can you please think about it?' > cecilia.txt

 $./t_name_to_handle_at cecilia.txt > fh

 $./t_open_by_handle_at < fh

 open_by_handle_at: Operation not permitted

 $ sudo ./t_open_by_handle_at < fh # Need CAP_SYS_ADMIN

 Read 31 bytes

 $ rm cecilia.txt

 Now we delete and (quickly) re-create the file so that it has the same

 content and (by chance) the same inode. Nevertheless, open_by_han?

 dle_at() recognizes that the original file referred to by the file han?

 dle no longer exists.

 $ stat --printf="%i\n" cecilia.txt # Display inode number

 4072121

 $ rm cecilia.txt

 $ echo 'Can you please think about it?' > cecilia.txt

 $ stat --printf="%i\n" cecilia.txt # Check inode number Page 7/13

 4072121

 $ sudo ./t_open_by_handle_at < fh

 open_by_handle_at: Stale NFS file handle

 Program source: t_name_to_handle_at.c

 #define _GNU_SOURCE

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <errno.h>

 #include <string.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 struct file_handle *fhp;

 int mount_id, fhsize, flags, dirfd;

 char *pathname;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s pathname\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 pathname = argv[1];

 /* Allocate file_handle structure */

 fhsize = sizeof(*fhp);

 fhp = malloc(fhsize);

 if (fhp == NULL)

 errExit("malloc");

 /* Make an initial call to name_to_handle_at() to discover

 the size required for file handle */ Page 8/13

 dirfd = AT_FDCWD; /* For name_to_handle_at() calls */

 flags = 0; /* For name_to_handle_at() calls */

 fhp->handle_bytes = 0;

 if (name_to_handle_at(dirfd, pathname, fhp,

 &mount_id, flags) != -1 || errno != EOVERFLOW) {

 fprintf(stderr, "Unexpected result from name_to_handle_at()\n");

 exit(EXIT_FAILURE);

 }

 /* Reallocate file_handle structure with correct size */

 fhsize = sizeof(*fhp) + fhp->handle_bytes;

 fhp = realloc(fhp, fhsize); /* Copies fhp->handle_bytes */

 if (fhp == NULL)

 errExit("realloc");

 /* Get file handle from pathname supplied on command line */

 if (name_to_handle_at(dirfd, pathname, fhp, &mount_id, flags) == -1)

 errExit("name_to_handle_at");

 /* Write mount ID, file handle size, and file handle to stdout,

 for later reuse by t_open_by_handle_at.c */

 printf("%d\n", mount_id);

 printf("%u %d ", fhp->handle_bytes, fhp->handle_type);

 for (int j = 0; j < fhp->handle_bytes; j++)

 printf(" %02x", fhp->f_handle[j]);

 printf("\n");

 exit(EXIT_SUCCESS);

 }

 Program source: t_open_by_handle_at.c

 #define _GNU_SOURCE

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 #include <limits.h>

 #include <stdio.h>

 #include <stdlib.h> Page 9/13

 #include <unistd.h>

 #include <string.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 /* Scan /proc/self/mountinfo to find the line whose mount ID matches

 'mount_id'. (An easier way to do this is to install and use the

 'libmount' library provided by the 'util-linux' project.)

 Open the corresponding mount path and return the resulting file

 descriptor. */

 static int

 open_mount_path_by_id(int mount_id)

 {

 char *linep;

 size_t lsize;

 char mount_path[PATH_MAX];

 int mi_mount_id, found;

 ssize_t nread;

 FILE *fp;

 fp = fopen("/proc/self/mountinfo", "r");

 if (fp == NULL)

 errExit("fopen");

 found = 0;

 linep = NULL;

 while (!found) {

 nread = getline(&linep, &lsize, fp);

 if (nread == -1)

 break;

 nread = sscanf(linep, "%d %*d %*s %*s %s",

 &mi_mount_id, mount_path);

 if (nread != 2) {

 fprintf(stderr, "Bad sscanf()\n");

 exit(EXIT_FAILURE);

 } Page 10/13

 if (mi_mount_id == mount_id)

 found = 1;

 }

 free(linep);

 fclose(fp);

 if (!found) {

 fprintf(stderr, "Could not find mount point\n");

 exit(EXIT_FAILURE);

 }

 return open(mount_path, O_RDONLY);

 }

 int

 main(int argc, char *argv[])

 {

 struct file_handle *fhp;

 int mount_id, fd, mount_fd, handle_bytes;

 ssize_t nread;

 char buf[1000];

 #define LINE_SIZE 100

 char line1[LINE_SIZE], line2[LINE_SIZE];

 char *nextp;

 if ((argc > 1 && strcmp(argv[1], "--help") == 0) || argc > 2) {

 fprintf(stderr, "Usage: %s [mount-path]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /* Standard input contains mount ID and file handle information:

 Line 1: <mount_id>

 Line 2: <handle_bytes> <handle_type> <bytes of handle in hex>

 */

 if ((fgets(line1, sizeof(line1), stdin) == NULL) ||

 (fgets(line2, sizeof(line2), stdin) == NULL)) {

 fprintf(stderr, "Missing mount_id / file handle\n");

 exit(EXIT_FAILURE); Page 11/13

 }

 mount_id = atoi(line1);

 handle_bytes = strtoul(line2, &nextp, 0);

 /* Given handle_bytes, we can now allocate file_handle structure */

 fhp = malloc(sizeof(*fhp) + handle_bytes);

 if (fhp == NULL)

 errExit("malloc");

 fhp->handle_bytes = handle_bytes;

 fhp->handle_type = strtoul(nextp, &nextp, 0);

 for (int j = 0; j < fhp->handle_bytes; j++)

 fhp->f_handle[j] = strtoul(nextp, &nextp, 16);

 /* Obtain file descriptor for mount point, either by opening

 the pathname specified on the command line, or by scanning

 /proc/self/mounts to find a mount that matches the 'mount_id'

 that we received from stdin. */

 if (argc > 1)

 mount_fd = open(argv[1], O_RDONLY);

 else

 mount_fd = open_mount_path_by_id(mount_id);

 if (mount_fd == -1)

 errExit("opening mount fd");

 /* Open file using handle and mount point */

 fd = open_by_handle_at(mount_fd, fhp, O_RDONLY);

 if (fd == -1)

 errExit("open_by_handle_at");

 /* Try reading a few bytes from the file */

 nread = read(fd, buf, sizeof(buf));

 if (nread == -1)

 errExit("read");

 printf("Read %zd bytes\n", nread);

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 12/13

 open(2), libblkid(3), blkid(8), findfs(8), mount(8)

 The libblkid and libmount documentation in the latest util-linux re?

 lease at ?https://www.kernel.org/pub/linux/utils/util-linux/?

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 OPEN_BY_HANDLE_AT(2)

Page 13/13

