
Rocky Enterprise Linux 9.2 Manual Pages on command 'mysqlbinlog.1'

$ man mysqlbinlog.1

MYSQLBINLOG(1)               MySQL Database System              MYSQLBINLOG(1)

NAME

       mysqlbinlog - utility for processing binary log files

SYNOPSIS

       mysqlbinlog [options] log_file ...

DESCRIPTION

       The server's binary log consists of files containing ?events? that

       describe modifications to database contents. The server writes these

       files in binary format. To display their contents in text format, use

       the mysqlbinlog utility. You can also use mysqlbinlog to display the

       contents of relay log files written by a replica server in a

       replication setup because relay logs have the same format as binary

       logs. The binary log and relay log are discussed further in

       Section 5.4.4, ?The Binary Log?, and Section 17.2.4, ?Relay Log and

       Replication Metadata Repositories?.

       Invoke mysqlbinlog like this:

           mysqlbinlog [options] log_file ...

       For example, to display the contents of the binary log file named Page 1/38



       binlog.000003, use this command:

           mysqlbinlog binlog.000003

       The output includes events contained in binlog.000003. For

       statement-based logging, event information includes the SQL statement,

       the ID of the server on which it was executed, the timestamp when the

       statement was executed, how much time it took, and so forth. For

       row-based logging, the event indicates a row change rather than an SQL

       statement. See Section 17.2.1, ?Replication Formats?, for information

       about logging modes.

       Events are preceded by header comments that provide additional

       information. For example:

           # at 141

           #100309  9:28:36 server id 123  end_log_pos 245

             Query thread_id=3350  exec_time=11  error_code=0

       In the first line, the number following at indicates the file offset,

       or starting position, of the event in the binary log file.

       The second line starts with a date and time indicating when the

       statement started on the server where the event originated. For

       replication, this timestamp is propagated to replica servers.  server

       id is the server_id value of the server where the event originated.

       end_log_pos indicates where the next event starts (that is, it is the

       end position of the current event + 1).  thread_id indicates which

       thread executed the event.  exec_time is the time spent executing the

       event, on a replication source server. On a replica, it is the

       difference of the end execution time on the replica minus the beginning

       execution time on the source. The difference serves as an indicator of

       how much replication lags behind the source.  error_code indicates the

       result from executing the event. Zero means that no error occurred.

           Note

           When using event groups, the file offsets of events may be grouped

           together and the comments of events may be grouped together. Do not

           mistake these grouped events for blank file offsets.

       The output from mysqlbinlog can be re-executed (for example, by using Page 2/38



       it as input to mysql) to redo the statements in the log. This is useful

       for recovery operations after an unexpected server exit. For other

       usage examples, see the discussion later in this section and in

       Section 7.5, ?Point-in-Time (Incremental) Recovery?. To execute the

       internal-use BINLOG statements used by mysqlbinlog, the user requires

       the BINLOG_ADMIN privilege (or the deprecated SUPER privilege), or the

       REPLICATION_APPLIER privilege plus the appropriate privileges to

       execute each log event.

       You can use mysqlbinlog to read binary log files directly and apply

       them to the local MySQL server. You can also read binary logs from a

       remote server by using the --read-from-remote-server option. To read

       remote binary logs, the connection parameter options can be given to

       indicate how to connect to the server. These options are --host,

       --password, --port, --protocol, --socket, and --user.

       When binary log files have been encrypted, which can be done from MySQL

       8.0.14 onwards, mysqlbinlog cannot read them directly, but can read

       them from the server using the --read-from-remote-server option. Binary

       log files are encrypted when the server's binlog_encryption system

       variable is set to ON. The SHOW BINARY LOGS statement shows whether a

       particular binary log file is encrypted or unencrypted. Encrypted and

       unencrypted binary log files can also be distinguished using the magic

       number at the start of the file header for encrypted log files

       (0xFD62696E), which differs from that used for unencrypted log files

       (0xFE62696E). Note that from MySQL 8.0.14, mysqlbinlog returns a

       suitable error if you attempt to read an encrypted binary log file

       directly, but older versions of mysqlbinlog do not recognise the file

       as a binary log file at all. For more information on binary log

       encryption, see Section 17.3.2, ?Encrypting Binary Log Files and Relay

       Log Files?.

       When binary log transaction payloads have been compressed, which can be

       done from MySQL 8.0.20 onwards, mysqlbinlog versions from that release

       on automatically decompress and decode the transaction payloads, and

       print them as they would uncompressed events. Older versions of Page 3/38



       mysqlbinlog cannot read compressed transaction payloads. When the

       server's binlog_transaction_compression system variable is set to ON,

       transaction payloads are compressed and then written to the server's

       binary log file as a single event (a Transaction_payload_event). With

       the --verbose option, mysqlbinlog adds comments stating the compression

       algorithm used, the compressed payload size that was originally

       received, and the resulting payload size after decompression.

           Note

           The end position (end_log_pos) that mysqlbinlog states for an

           individual event that was part of a compressed transaction payload

           is the same as the end position of the original compressed payload.

           Multiple decompressed events can therefore have the same end

           position.

           mysqlbinlog's own connection compression does less if transaction

           payloads are already compressed, but still operates on uncompressed

           transactions and headers.

       For more information on binary log transaction compression, see

       Section 5.4.4.5, ?Binary Log Transaction Compression?.

       When running mysqlbinlog against a large binary log, be careful that

       the filesystem has enough space for the resulting files. To configure

       the directory that mysqlbinlog uses for temporary files, use the TMPDIR

       environment variable.

       mysqlbinlog sets the value of pseudo_replica_mode or pseudo_slave_mode

       to true before executing any SQL statements. This system variable

       affects the handling of XA transactions, the original_commit_timestamp

       replication delay timestamp and the original_server_version system

       variable, and unsupported SQL modes.

       mysqlbinlog supports the following options, which can be specified on

       the command line or in the [mysqlbinlog] and [client] groups of an

       option file. For information about option files used by MySQL programs,

       see Section 4.2.2.2, ?Using Option Files?.

       ?   --help, -?  Display a help message and exit.

       ?   --base64-output=value This option determines when events should be Page 4/38



           displayed encoded as base-64 strings using BINLOG statements. The

           option has these permissible values (not case-sensitive):

           ?   AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG

               statements automatically when necessary (that is, for format

               description events and row events). If no --base64-output

               option is given, the effect is the same as

               --base64-output=AUTO.

                   Note

                   Automatic BINLOG display is the only safe behavior if you

                   intend to use the output of mysqlbinlog to re-execute

                   binary log file contents. The other option values are

                   intended only for debugging or testing purposes because

                   they may produce output that does not include all events in

                   executable form.

           ?   NEVER causes BINLOG statements not to be displayed.

               mysqlbinlog exits with an error if a row event is found that

               must be displayed using BINLOG.

           ?   DECODE-ROWS specifies to mysqlbinlog that you intend for row

               events to be decoded and displayed as commented SQL statements

               by also specifying the --verbose option. Like NEVER,

               DECODE-ROWS suppresses display of BINLOG statements, but unlike

               NEVER, it does not exit with an error if a row event is found.

           For examples that show the effect of --base64-output and --verbose

           on row event output, see the section called ?MYSQLBINLOG ROW EVENT

           DISPLAY?.

       ?   --bind-address=ip_address On a computer having multiple network

           interfaces, use this option to select which interface to use for

           connecting to the MySQL server.

       ?   --binlog-row-event-max-size=N

           ????????????????????????????????????????????????

           ?Command-Line Format ? --binlog-row-event-max- ?

           ?                    ? size=#                  ?

           ???????????????????????????????????????????????? Page 5/38



           ?Type                ? Numeric                 ?

           ????????????????????????????????????????????????

           ?Default Value       ? 4294967040              ?

           ????????????????????????????????????????????????

           ?Minimum Value       ? 256                     ?

           ????????????????????????????????????????????????

           ?Maximum Value       ? 18446744073709547520    ?

           ????????????????????????????????????????????????

           Specify the maximum size of a row-based binary log event, in bytes.

           Rows are grouped into events smaller than this size if possible.

           The value should be a multiple of 256. The default is 4GB.

       ?   --character-sets-dir=dir_name The directory where character sets

           are installed. See Section 10.15, ?Character Set Configuration?.

       ?   --compress Compress all information sent between the client and the

           server if possible. See Section 4.2.8, ?Connection Compression

           Control?.

           This option was added in MySQL 8.0.17. As of MySQL 8.0.18 it is

           deprecated. Expect it to be removed in a future version of MySQL.

           See the section called ?Configuring Legacy Connection Compression?.

       ?   --compression-algorithms=value The permitted compression algorithms

           for connections to the server. The available algorithms are the

           same as for the protocol_compression_algorithms system variable.

           The default value is uncompressed.

           For more information, see Section 4.2.8, ?Connection Compression

           Control?.

           This option was added in MySQL 8.0.18.

       ?   --connection-server-id=server_id --connection-server-id specifies

           the server ID that mysqlbinlog reports when it connects to the

           server. It can be used to avoid a conflict with the ID of a replica

           server or another mysqlbinlog process.

           If the --read-from-remote-server option is specified, mysqlbinlog

           reports a server ID of 0, which tells the server to disconnect

           after sending the last log file (nonblocking behavior). If the Page 6/38



           --stop-never option is also specified to maintain the connection to

           the server, mysqlbinlog reports a server ID of 1 by default instead

           of 0, and --connection-server-id can be used to replace that server

           ID if required. See the section called ?SPECIFYING THE MYSQLBINLOG

           SERVER ID?.

       ?   --database=db_name, -d db_name This option causes mysqlbinlog to

           output entries from the binary log (local log only) that occur

           while db_name is been selected as the default database by USE.

           The --database option for mysqlbinlog is similar to the

           --binlog-do-db option for mysqld, but can be used to specify only

           one database. If --database is given multiple times, only the last

           instance is used.

           The effects of this option depend on whether the statement-based or

           row-based logging format is in use, in the same way that the

           effects of --binlog-do-db depend on whether statement-based or

           row-based logging is in use.

           Statement-based logging. The --database option works as follows:

           ?   While db_name is the default database, statements are output

               whether they modify tables in db_name or a different database.

           ?   Unless db_name is selected as the default database, statements

               are not output, even if they modify tables in db_name.

           ?   There is an exception for CREATE DATABASE, ALTER DATABASE, and

               DROP DATABASE. The database being created, altered, or dropped

               is considered to be the default database when determining

               whether to output the statement.

           Suppose that the binary log was created by executing these

           statements using statement-based-logging:

               INSERT INTO test.t1 (i) VALUES(100);

               INSERT INTO db2.t2 (j)  VALUES(200);

               USE test;

               INSERT INTO test.t1 (i) VALUES(101);

               INSERT INTO t1 (i)      VALUES(102);

               INSERT INTO db2.t2 (j)  VALUES(201); Page 7/38



               USE db2;

               INSERT INTO test.t1 (i) VALUES(103);

               INSERT INTO db2.t2 (j)  VALUES(202);

               INSERT INTO t2 (j)      VALUES(203);

           mysqlbinlog --database=test does not output the first two INSERT

           statements because there is no default database. It outputs the

           three INSERT statements following USE test, but not the three

           INSERT statements following USE db2.

           mysqlbinlog --database=db2 does not output the first two INSERT

           statements because there is no default database. It does not output

           the three INSERT statements following USE test, but does output the

           three INSERT statements following USE db2.

           Row-based logging. mysqlbinlog outputs only entries that change

           tables belonging to db_name. The default database has no effect on

           this. Suppose that the binary log just described was created using

           row-based logging rather than statement-based logging.  mysqlbinlog

           --database=test outputs only those entries that modify t1 in the

           test database, regardless of whether USE was issued or what the

           default database is.  If a server is running with binlog_format set

           to MIXED and you want it to be possible to use mysqlbinlog with the

           --database option, you must ensure that tables that are modified

           are in the database selected by USE. (In particular, no

           cross-database updates should be used.)

           When used together with the --rewrite-db option, the --rewrite-db

           option is applied first; then the --database option is applied,

           using the rewritten database name. The order in which the options

           are provided makes no difference in this regard.

       ?   --debug[=debug_options], -# [debug_options] Write a debugging log.

           A typical debug_options string is d:t:o,file_name. The default is

           d:t:o,/tmp/mysqlbinlog.trace.

           This option is available only if MySQL was built using WITH_DEBUG.

           MySQL release binaries provided by Oracle are not built using this

           option. Page 8/38



       ?   --debug-check Print some debugging information when the program

           exits.

           This option is available only if MySQL was built using WITH_DEBUG.

           MySQL release binaries provided by Oracle are not built using this

           option.

       ?   --debug-info Print debugging information and memory and CPU usage

           statistics when the program exits.

           This option is available only if MySQL was built using WITH_DEBUG.

           MySQL release binaries provided by Oracle are not built using this

           option.

       ?   --default-auth=plugin A hint about which client-side authentication

           plugin to use. See Section 6.2.17, ?Pluggable Authentication?.

       ?   --defaults-extra-file=file_name Read this option file after the

           global option file but (on Unix) before the user option file. If

           the file does not exist or is otherwise inaccessible, an error

           occurs. If file_name is not an absolute path name, it is

           interpreted relative to the current directory.

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect

           Option-File Handling?.

       ?   --defaults-file=file_name Use only the given option file. If the

           file does not exist or is otherwise inaccessible, an error occurs.

           If file_name is not an absolute path name, it is interpreted

           relative to the current directory.

           Exception: Even with --defaults-file, client programs read

           .mylogin.cnf.

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect

           Option-File Handling?.

       ?   --defaults-group-suffix=str Read not only the usual option groups,

           but also groups with the usual names and a suffix of str. For

           example, mysqlbinlog normally reads the [client] and [mysqlbinlog]

           groups. If this option is given as --defaults-group-suffix=_other, Page 9/38



           mysqlbinlog also reads the [client_other] and [mysqlbinlog_other]

           groups.

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect

           Option-File Handling?.

       ?   --disable-log-bin, -D Disable binary logging. This is useful for

           avoiding an endless loop if you use the --to-last-log option and

           are sending the output to the same MySQL server. This option also

           is useful when restoring after an unexpected exit to avoid

           duplication of the statements you have logged.

           This option causes mysqlbinlog to include a SET sql_log_bin = 0

           statement in its output to disable binary logging of the remaining

           output. Manipulating the session value of the sql_log_bin system

           variable is a restricted operation, so this option requires that

           you have privileges sufficient to set restricted session variables.

           See Section 5.1.9.1, ?System Variable Privileges?.

       ?   --exclude-gtids=gtid_set Do not display any of the groups listed in

           the gtid_set.

       ?   --force-if-open, -F Read binary log files even if they are open or

           were not closed properly (IN_USE flag is set); do not fail if the

           file ends with a truncated event.

           The IN_USE flag is set only for the binary log that is currently

           written by the server; if the server has crashed, the flag remains

           set until the server is started up again and recovers the binary

           log. Without this option, mysqlbinlog refuses to process a file

           with this flag set. Since the server may be in the process of

           writing the file, truncation of the last event is considered

           normal.

       ?   --force-read, -f With this option, if mysqlbinlog reads a binary

           log event that it does not recognize, it prints a warning, ignores

           the event, and continues. Without this option, mysqlbinlog stops if

           it reads such an event.

       ?   --get-server-public-key Request from the server the public key Page 10/38



           required for RSA key pair-based password exchange. This option

           applies to clients that authenticate with the caching_sha2_password

           authentication plugin. For that plugin, the server does not send

           the public key unless requested. This option is ignored for

           accounts that do not authenticate with that plugin. It is also

           ignored if RSA-based password exchange is not used, as is the case

           when the client connects to the server using a secure connection.

           If --server-public-key-path=file_name is given and specifies a

           valid public key file, it takes precedence over

           --get-server-public-key.

           For information about the caching_sha2_password plugin, see

           Section 6.4.1.2, ?Caching SHA-2 Pluggable Authentication?.

       ?   --hexdump, -H Display a hex dump of the log in comments, as

           described in the section called ?MYSQLBINLOG HEX DUMP FORMAT?. The

           hex output can be helpful for replication debugging.

       ?   --host=host_name, -h host_name Get the binary log from the MySQL

           server on the given host.

       ?   --idempotent Tell the MySQL Server to use idempotent mode while

           processing updates; this causes suppression of any duplicate-key or

           key-not-found errors that the server encounters in the current

           session while processing updates. This option may prove useful

           whenever it is desirable or necessary to replay one or more binary

           logs to a MySQL Server which may not contain all of the data to

           which the logs refer.

           The scope of effect for this option includes the current

           mysqlbinlog client and session only.

       ?   --include-gtids=gtid_set Display only the groups listed in the

           gtid_set.

       ?   --local-load=dir_name, -l dir_name For data loading operations

           corresponding to LOAD DATA statements, mysqlbinlog extracts the

           files from the binary log events, writes them as temporary files to

           the local file system, and writes LOAD DATA LOCAL statements to

           cause the files to be loaded. By default, mysqlbinlog writes these Page 11/38



           temporary files to an operating system-specific directory. The

           --local-load option can be used to explicitly specify the directory

           where mysqlbinlog should prepare local temporary files.

           Because other processes can write files to the default

           system-specific directory, it is advisable to specify the

           --local-load option to mysqlbinlog to designate a different

           directory for data files, and then designate that same directory by

           specifying the --load-data-local-dir option to mysql when

           processing the output from mysqlbinlog. For example:

               mysqlbinlog --local-load=/my/local/data ...

                   | mysql --load-data-local-dir=/my/local/data ...

               Important

               These temporary files are not automatically removed by

               mysqlbinlog or any other MySQL program.

       ?   --login-path=name Read options from the named login path in the

           .mylogin.cnf login path file. A ?login path? is an option group

           containing options that specify which MySQL server to connect to

           and which account to authenticate as. To create or modify a login

           path file, use the mysql_config_editor utility. See

           mysql_config_editor(1).

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect

           Option-File Handling?.

       ?   --no-defaults Do not read any option files. If program startup

           fails due to reading unknown options from an option file,

           --no-defaults can be used to prevent them from being read.

           The exception is that the .mylogin.cnf file is read in all cases,

           if it exists. This permits passwords to be specified in a safer way

           than on the command line even when --no-defaults is used. To create

           .mylogin.cnf, use the mysql_config_editor utility. See

           mysql_config_editor(1).

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect Page 12/38



           Option-File Handling?.

       ?   --offset=N, -o N Skip the first N entries in the log.

       ?   --open-files-limit=N Specify the number of open file descriptors to

           reserve.

       ?   --password[=password], -p[password] The password of the MySQL

           account used for connecting to the server. The password value is

           optional. If not given, mysqlbinlog prompts for one. If given,

           there must be no space between --password= or -p and the password

           following it. If no password option is specified, the default is to

           send no password.

           Specifying a password on the command line should be considered

           insecure. To avoid giving the password on the command line, use an

           option file. See Section 6.1.2.1, ?End-User Guidelines for Password

           Security?.

           To explicitly specify that there is no password and that

           mysqlbinlog should not prompt for one, use the --skip-password

           option.

       ?   --plugin-dir=dir_name The directory in which to look for plugins.

           Specify this option if the --default-auth option is used to specify

           an authentication plugin but mysqlbinlog does not find it. See

           Section 6.2.17, ?Pluggable Authentication?.

       ?   --port=port_num, -P port_num The TCP/IP port number to use for

           connecting to a remote server.

       ?   --print-defaults Print the program name and all options that it

           gets from option files.

           For additional information about this and other option-file

           options, see Section 4.2.2.3, ?Command-Line Options that Affect

           Option-File Handling?.

       ?   --print-table-metadata Print table related metadata from the binary

           log. Configure the amount of table related metadata binary logged

           using binlog-row-metadata.

       ?   --protocol={TCP|SOCKET|PIPE|MEMORY} The transport protocol to use

           for connecting to the server. It is useful when the other Page 13/38



           connection parameters normally result in use of a protocol other

           than the one you want. For details on the permissible values, see

           Section 4.2.7, ?Connection Transport Protocols?.

       ?   --raw By default, mysqlbinlog reads binary log files and writes

           events in text format. The --raw option tells mysqlbinlog to write

           them in their original binary format. Its use requires that

           --read-from-remote-server also be used because the files are

           requested from a server.  mysqlbinlog writes one output file for

           each file read from the server. The --raw option can be used to

           make a backup of a server's binary log. With the --stop-never

           option, the backup is ?live? because mysqlbinlog stays connected to

           the server. By default, output files are written in the current

           directory with the same names as the original log files. Output

           file names can be modified using the --result-file option. For more

           information, see the section called ?USING MYSQLBINLOG TO BACK UP

           BINARY LOG FILES?.

       ?   --read-from-remote-source=type From MySQL 8.0.26, use

           --read-from-remote-source, and before MySQL 8.0.26, use

           --read-from-remote-master. Both options have the same effect. The

           options read binary logs from a MySQL server with the

           COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID commands by setting the

           option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-GTIDS,

           respectively. If --read-from-remote-source=BINLOG-DUMP-GTIDS or

           --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with

           --exclude-gtids, transactions can be filtered out on the source,

           avoiding unnecessary network traffic.

           The connection parameter options are used with these options or the

           --read-from-remote-server option. These options are --host,

           --password, --port, --protocol, --socket, and --user. If none of

           the remote options is specified, the connection parameter options

           are ignored.

           The REPLICATION SLAVE privilege is required to use these options.

       ?   --read-from-remote-master=type Use this option before MySQL 8.0.26 Page 14/38



           rather than --read-from-remote-source. Both options have the same

           effect.

       ?   --read-from-remote-server=file_name, -R Read the binary log from a

           MySQL server rather than reading a local log file. This option

           requires that the remote server be running. It works only for

           binary log files on the remote server, not relay log files, and

           takes only the binary log file name (including the numeric suffix)

           as its argument, while ignoring any path.

           The connection parameter options are used with this option or the

           --read-from-remote-master option. These options are --host,

           --password, --port, --protocol, --socket, and --user. If neither of

           the remote options is specified, the connection parameter options

           are ignored.

           The REPLICATION SLAVE privilege is required to use this option.

           This option is like

           --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.

       ?   --result-file=name, -r name Without the --raw option, this option

           indicates the file to which mysqlbinlog writes text output. With

           --raw, mysqlbinlog writes one binary output file for each log file

           transferred from the server, writing them by default in the current

           directory using the same names as the original log file. In this

           case, the --result-file option value is treated as a prefix that

           modifies output file names.

       ?   --require-row-format Require row-based binary logging format for

           events. This option enforces row-based replication events for

           mysqlbinlog output. The stream of events produced with this option

           would be accepted by a replication channel that is secured using

           the REQUIRE_ROW_FORMAT option of the CHANGE REPLICATION SOURCE TO

           statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before

           MySQL 8.0.23).  binlog_format=ROW must be set on the server where

           the binary log was written. When you specify this option,

           mysqlbinlog stops with an error message if it encounters any events

           that are disallowed under the REQUIRE_ROW_FORMAT restrictions, Page 15/38



           including LOAD DATA INFILE instructions, creating or dropping

           temporary tables, INTVAR, RAND, or USER_VAR events, and

           non-row-based events within a DML transaction.  mysqlbinlog also

           prints a SET @@session.require_row_format statement at the start of

           its output to apply the restrictions when the output is executed,

           and does not print the SET @@session.pseudo_thread_id statement.

           This option was added in MySQL 8.0.19.

       ?   --rewrite-db='from_name->to_name' When reading from a row-based or

           statement-based log, rewrite all occurrences of from_name to

           to_name. Rewriting is done on the rows, for row-based logs, as well

           as on the USE clauses, for statement-based logs.

               Warning

               Statements in which table names are qualified with database

               names are not rewritten to use the new name when using this

               option.

           The rewrite rule employed as a value for this option is a string

           having the form 'from_name->to_name', as shown previously, and for

           this reason must be enclosed by quotation marks.

           To employ multiple rewrite rules, specify the option multiple

           times, as shown here:

               mysqlbinlog --rewrite-db='dbcurrent->dbold' --rewrite-db='dbtest->dbcurrent' \

                   binlog.00001 > /tmp/statements.sql

           When used together with the --database option, the --rewrite-db

           option is applied first; then --database option is applied, using

           the rewritten database name. The order in which the options are

           provided makes no difference in this regard.

           This means that, for example, if mysqlbinlog is started with

           --rewrite-db='mydb->yourdb' --database=yourdb, then all updates to

           any tables in databases mydb and yourdb are included in the output.

           On the other hand, if it is started with

           --rewrite-db='mydb->yourdb' --database=mydb, then mysqlbinlog

           outputs no statements at all: since all updates to mydb are first

           rewritten as updates to yourdb before applying the --database Page 16/38



           option, there remain no updates that match --database=mydb.

       ?   --server-id=id Display only those events created by the server

           having the given server ID.

       ?   --server-id-bits=N Use only the first N bits of the server_id to

           identify the server. If the binary log was written by a mysqld with

           server-id-bits set to less than 32 and user data stored in the most

           significant bit, running mysqlbinlog with --server-id-bits set to

           32 enables this data to be seen.

           This option is supported only by the version of mysqlbinlog

           supplied with the NDB Cluster distribution, or built with NDB

           Cluster support.

       ?   --server-public-key-path=file_name The path name to a file in PEM

           format containing a client-side copy of the public key required by

           the server for RSA key pair-based password exchange. This option

           applies to clients that authenticate with the sha256_password or

           caching_sha2_password authentication plugin. This option is ignored

           for accounts that do not authenticate with one of those plugins. It

           is also ignored if RSA-based password exchange is not used, as is

           the case when the client connects to the server using a secure

           connection.

           If --server-public-key-path=file_name is given and specifies a

           valid public key file, it takes precedence over

           --get-server-public-key.

           For sha256_password, this option applies only if MySQL was built

           using OpenSSL.

           For information about the sha256_password and caching_sha2_password

           plugins, see Section 6.4.1.3, ?SHA-256 Pluggable Authentication?,

           and Section 6.4.1.2, ?Caching SHA-2 Pluggable Authentication?.

       ?   --set-charset=charset_name Add a SET NAMES charset_name statement

           to the output to specify the character set to be used for

           processing log files.

       ?   --shared-memory-base-name=name On Windows, the shared-memory name

           to use for connections made using shared memory to a local server. Page 17/38



           The default value is MYSQL. The shared-memory name is

           case-sensitive.

           This option applies only if the server was started with the

           shared_memory system variable enabled to support shared-memory

           connections.

       ?   --short-form, -s Display only the statements contained in the log,

           without any extra information or row-based events. This is for

           testing only, and should not be used in production systems. It is

           deprecated, and you should expect it to be removed in a future

           release.

       ?   --skip-gtids[=(true|false)] Do not include the GTIDs from the

           binary log files in the output dump file. For example:

               mysqlbinlog --skip-gtids binlog.000001 >  /tmp/dump.sql

               mysql -u root -p -e "source /tmp/dump.sql"

           You should not normally use this option in production or in

           recovery, except in the specific, and rare, scenarios where the

           GTIDs are actively unwanted. For example, an administrator might

           want to duplicate selected transactions (such as table definitions)

           from a deployment to another, unrelated, deployment that will not

           replicate to or from the original. In that scenario, --skip-gtids

           can be used to enable the administrator to apply the transactions

           as if they were new, and ensure that the deployments remain

           unrelated. However, you should only use this option if the

           inclusion of the GTIDs causes a known issue for your use case.

       ?   --socket=path, -S path For connections to localhost, the Unix

           socket file to use, or, on Windows, the name of the named pipe to

           use.

           On Windows, this option applies only if the server was started with

           the named_pipe system variable enabled to support named-pipe

           connections. In addition, the user making the connection must be a

           member of the Windows group specified by the

           named_pipe_full_access_group system variable.

       ?   --ssl* Options that begin with --ssl specify whether to connect to Page 18/38



           the server using encryption and indicate where to find SSL keys and

           certificates. See the section called ?Command Options for Encrypted

           Connections?.

       ?   --ssl-fips-mode={OFF|ON|STRICT} Controls whether to enable FIPS

           mode on the client side. The --ssl-fips-mode option differs from

           other --ssl-xxx options in that it is not used to establish

           encrypted connections, but rather to affect which cryptographic

           operations to permit. See Section 6.8, ?FIPS Support?.

           These --ssl-fips-mode values are permitted:

           ?   OFF: Disable FIPS mode.

           ?   ON: Enable FIPS mode.

           ?   STRICT: Enable ?strict? FIPS mode.

               Note

               If the OpenSSL FIPS Object Module is not available, the only

               permitted value for --ssl-fips-mode is OFF. In this case,

               setting --ssl-fips-mode to ON or STRICT causes the client to

               produce a warning at startup and to operate in non-FIPS mode.

           As of MySQL 8.0.34, this option is deprecated. Expect it to be

           removed in a future version of MySQL.

       ?   --start-datetime=datetime Start reading the binary log at the first

           event having a timestamp equal to or later than the datetime

           argument. The datetime value is relative to the local time zone on

           the machine where you run mysqlbinlog. The value should be in a

           format accepted for the DATETIME or TIMESTAMP data types. For

           example:

               mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

           This option is useful for point-in-time recovery. See Section 7.5,

           ?Point-in-Time (Incremental) Recovery?.

       ?   --start-position=N, -j N Start decoding the binary log at the log

           position N, including in the output any events that begin at

           position N or after. The position is a byte point in the log file,

           not an event counter; it needs to point to the starting position of

           an event to generate useful output. This option applies to the Page 19/38



           first log file named on the command line.

           Prior to MySQL 8.0.33, the maximum value supported for this option

           was 4294967295 (232-1). In MySQL 8.0.33 and later, it is

           18446744073709551616 (264-1), unless --read-from-remote-server or

           --read-from-remote-source is also used, in which case the maximum

           is 4294967295.

           This option is useful for point-in-time recovery. See Section 7.5,

           ?Point-in-Time (Incremental) Recovery?.

       ?   --stop-datetime=datetime Stop reading the binary log at the first

           event having a timestamp equal to or later than the datetime

           argument. See the description of the --start-datetime option for

           information about the datetime value.

           This option is useful for point-in-time recovery. See Section 7.5,

           ?Point-in-Time (Incremental) Recovery?.

       ?   --stop-never This option is used with --read-from-remote-server. It

           tells mysqlbinlog to remain connected to the server. Otherwise

           mysqlbinlog exits when the last log file has been transferred from

           the server.  --stop-never implies --to-last-log, so only the first

           log file to transfer need be named on the command line.

           --stop-never is commonly used with --raw to make a live binary log

           backup, but also can be used without --raw to maintain a continuous

           text display of log events as the server generates them.

           With --stop-never, by default, mysqlbinlog reports a server ID of 1

           when it connects to the server. Use --connection-server-id to

           explicitly specify an alternative ID to report. It can be used to

           avoid a conflict with the ID of a replica server or another

           mysqlbinlog process. See the section called ?SPECIFYING THE

           MYSQLBINLOG SERVER ID?.

       ?   --stop-never-slave-server-id=id This option is deprecated; expect

           it to be removed in a future release. Use the

           --connection-server-id option instead to specify a server ID for

           mysqlbinlog to report.

       ?   --stop-position=N Stop decoding the binary log at the log position Page 20/38



           N, excluding from the output any events that begin at position N or

           after. The position is a byte point in the log file, not an event

           counter; it needs to point to a spot after the starting position of

           the last event you want to include in the output. The event

           starting before position N and finishing at or after the position

           is the last event to be processed. This option applies to the last

           log file named on the command line.

           This option is useful for point-in-time recovery. See Section 7.5,

           ?Point-in-Time (Incremental) Recovery?.

       ?   --tls-ciphersuites=ciphersuite_list The permissible ciphersuites

           for encrypted connections that use TLSv1.3. The value is a list of

           one or more colon-separated ciphersuite names. The ciphersuites

           that can be named for this option depend on the SSL library used to

           compile MySQL. For details, see Section 6.3.2, ?Encrypted

           Connection TLS Protocols and Ciphers?.

           This option was added in MySQL 8.0.16.

       ?   --tls-version=protocol_list The permissible TLS protocols for

           encrypted connections. The value is a list of one or more

           comma-separated protocol names. The protocols that can be named for

           this option depend on the SSL library used to compile MySQL. For

           details, see Section 6.3.2, ?Encrypted Connection TLS Protocols and

           Ciphers?.

       ?   --to-last-log, -t Do not stop at the end of the requested binary

           log from a MySQL server, but rather continue printing until the end

           of the last binary log. If you send the output to the same MySQL

           server, this may lead to an endless loop. This option requires

           --read-from-remote-server.

       ?   --user=user_name, -u user_name The user name of the MySQL account

           to use when connecting to a remote server.

           If you are using the Rewriter plugin with MySQL 8.0.31 or later,

           you should grant this user the SKIP_QUERY_REWRITE privilege.

       ?   --verbose, -v Reconstruct row events and display them as commented

           SQL statements, with table partition information where applicable. Page 21/38



           If this option is given twice (by passing in either "-vv" or

           "--verbose --verbose"), the output includes comments to indicate

           column data types and some metadata, and informational log events

           such as row query log events if the binlog_rows_query_log_events

           system variable is set to TRUE.

           For examples that show the effect of --base64-output and --verbose

           on row event output, see the section called ?MYSQLBINLOG ROW EVENT

           DISPLAY?.

       ?   --verify-binlog-checksum, -c Verify checksums in binary log files.

       ?   --version, -V Display version information and exit.

           The mysqlbinlog version number shown when using this option is 3.4.

       ?   --zstd-compression-level=level The compression level to use for

           connections to the server that use the zstd compression algorithm.

           The permitted levels are from 1 to 22, with larger values

           indicating increasing levels of compression. The default zstd

           compression level is 3. The compression level setting has no effect

           on connections that do not use zstd compression.

           For more information, see Section 4.2.8, ?Connection Compression

           Control?.

           This option was added in MySQL 8.0.18.

       You can pipe the output of mysqlbinlog into the mysql client to execute

       the events contained in the binary log. This technique is used to

       recover from an unexpected exit when you have an old backup (see

       Section 7.5, ?Point-in-Time (Incremental) Recovery?). For example:

           mysqlbinlog binlog.000001 | mysql -u root -p

       Or:

           mysqlbinlog binlog.[0-9]* | mysql -u root -p

       If the statements produced by mysqlbinlog may contain BLOB values,

       these may cause problems when mysql processes them. In this case,

       invoke mysql with the --binary-mode option.

       You can also redirect the output of mysqlbinlog to a text file instead,

       if you need to modify the statement log first (for example, to remove

       statements that you do not want to execute for some reason). After Page 22/38



       editing the file, execute the statements that it contains by using it

       as input to the mysql program:

           mysqlbinlog binlog.000001 > tmpfile

           ... edit tmpfile ...

           mysql -u root -p < tmpfile

       When mysqlbinlog is invoked with the --start-position option, it

       displays only those events with an offset in the binary log greater

       than or equal to a given position (the given position must match the

       start of one event). It also has options to stop and start when it sees

       an event with a given date and time. This enables you to perform

       point-in-time recovery using the --stop-datetime option (to be able to

       say, for example, ?roll forward my databases to how they were today at

       10:30 a.m.?).

       Processing multiple files. If you have more than one binary log to

       execute on the MySQL server, the safe method is to process them all

       using a single connection to the server. Here is an example that

       demonstrates what may be unsafe:

           mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!

           mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

       Processing binary logs this way using multiple connections to the

       server causes problems if the first log file contains a CREATE

       TEMPORARY TABLE statement and the second log contains a statement that

       uses the temporary table. When the first mysql process terminates, the

       server drops the temporary table. When the second mysql process

       attempts to use the table, the server reports ?unknown table.?

       To avoid problems like this, use a single mysql process to execute the

       contents of all binary logs that you want to process. Here is one way

       to do so:

           mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

       Another approach is to write all the logs to a single file and then

       process the file:

           mysqlbinlog binlog.000001 >  /tmp/statements.sql

           mysqlbinlog binlog.000002 >> /tmp/statements.sql Page 23/38



           mysql -u root -p -e "source /tmp/statements.sql"

       From MySQL 8.0.12, you can also supply multiple binary log files to

       mysqlbinlog as streamed input using a shell pipe. An archive of

       compressed binary log files can be decompressed and provided directly

       to mysqlbinlog. In this example, binlog-files_1.gz contains multiple

       binary log files for processing. The pipeline extracts the contents of

       binlog-files_1.gz, pipes the binary log files to mysqlbinlog as

       standard input, and pipes the output of mysqlbinlog into the mysql

       client for execution:

           gzip -cd binlog-files_1.gz | ./mysqlbinlog - | ./mysql -uroot  -p

       You can specify more than one archive file, for example:

           gzip -cd binlog-files_1.gz binlog-files_2.gz | ./mysqlbinlog - | ./mysql -uroot  -p

       For streamed input, do not use --stop-position, because mysqlbinlog

       cannot identify the last log file to apply this option.

       LOAD DATA operations. mysqlbinlog can produce output that reproduces a

       LOAD DATA operation without the original data file.  mysqlbinlog copies

       the data to a temporary file and writes a LOAD DATA LOCAL statement

       that refers to the file. The default location of the directory where

       these files are written is system-specific. To specify a directory

       explicitly, use the --local-load option.

       Because mysqlbinlog converts LOAD DATA statements to LOAD DATA LOCAL

       statements (that is, it adds LOCAL), both the client and the server

       that you use to process the statements must be configured with the

       LOCAL capability enabled. See Section 6.1.6, ?Security Considerations

       for LOAD DATA LOCAL?.

           Warning

           The temporary files created for LOAD DATA LOCAL statements are not

           automatically deleted because they are needed until you actually

           execute those statements. You should delete the temporary files

           yourself after you no longer need the statement log. The files can

           be found in the temporary file directory and have names like

           original_file_name-#-#.

MYSQLBINLOG HEX DUMP FORMAT Page 24/38



       The --hexdump option causes mysqlbinlog to produce a hex dump of the

       binary log contents:

           mysqlbinlog --hexdump source-bin.000001

       The hex output consists of comment lines beginning with #, so the

       output might look like this for the preceding command:

           /*!40019 SET @@SESSION.max_insert_delayed_threads=0*/;

           /*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;

           # at 4

           #051024 17:24:13 server id 1  end_log_pos 98

           # Position  Timestamp   Type   Master ID        Size      Master Pos    Flags

           # 00000004 9d fc 5c 43   0f   01 00 00 00   5e 00 00 00   62 00 00 00   00 00

           # 00000017 04 00 35 2e 30 2e 31 35  2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|

           # 00000027 6f 67 00 00 00 00 00 00  00 00 00 00 00 00 00 00 |og..............|

           # 00000037 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 |................|

           # 00000047 00 00 00 00 9d fc 5c 43  13 38 0d 00 08 00 12 00 |.......C.8......|

           # 00000057 04 04 04 04 12 00 00 4b  00 04 1a                |.......K...|

           #       Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13

           #       at startup

           ROLLBACK;

       Hex dump output currently contains the elements in the following list.

       This format is subject to change. For more information about binary log

       format, see MySQL Internals: The Binary Log[1].

       ?   Position: The byte position within the log file.

       ?   Timestamp: The event timestamp. In the example shown, '9d fc 5c 43'

           is the representation of '051024 17:24:13' in hexadecimal.

       ?   Type: The event type code.

       ?   Master ID: The server ID of the replication source server that

           created the event.

       ?   Size: The size in bytes of the event.

       ?   Master Pos: The position of the next event in the original source's

           binary log file.

       ?   Flags: Event flag values.

MYSQLBINLOG ROW EVENT DISPLAY Page 25/38



       The following examples illustrate how mysqlbinlog displays row events

       that specify data modifications. These correspond to events with the

       WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and DELETE_ROWS_EVENT type codes.

       The --base64-output=DECODE-ROWS and --verbose options may be used to

       affect row event output.

       Suppose that the server is using row-based binary logging and that you

       execute the following sequence of statements:

           CREATE TABLE t

           (

             id   INT NOT NULL,

             name VARCHAR(20) NOT NULL,

             date DATE NULL

           ) ENGINE = InnoDB;

           START TRANSACTION;

           INSERT INTO t VALUES(1, 'apple', NULL);

           UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;

           DELETE FROM t WHERE id = 1;

           COMMIT;

       By default, mysqlbinlog displays row events encoded as base-64 strings

       using BINLOG statements. Omitting extraneous lines, the output for the

       row events produced by the preceding statement sequence looks like

       this:

           $> mysqlbinlog log_file

           ...

           # at 218

           #080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

           '/*!*/;

           ...

           # at 302

           #080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F Page 26/38



           BINLOG '

           fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

           '/*!*/;

           ...

           # at 400

           #080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

           '/*!*/;

       To see the row events as comments in the form of ?pseudo-SQL?

       statements, run mysqlbinlog with the --verbose or -v option. This

       output level also shows table partition information where applicable.

       The output contains lines beginning with ###:

           $> mysqlbinlog -v log_file

           ...

           # at 218

           #080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

           '/*!*/;

           ### INSERT INTO test.t

           ### SET

           ###   @1=1

           ###   @2='apple'

           ###   @3=NULL

           ...

           # at 302

           #080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ= Page 27/38



           fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

           '/*!*/;

           ### UPDATE test.t

           ### WHERE

           ###   @1=1

           ###   @2='apple'

           ###   @3=NULL

           ### SET

           ###   @1=1

           ###   @2='pear'

           ###   @3='2009:01:01'

           ...

           # at 400

           #080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

           '/*!*/;

           ### DELETE FROM test.t

           ### WHERE

           ###   @1=1

           ###   @2='pear'

           ###   @3='2009:01:01'

       Specify --verbose or -v twice to also display data types and some

       metadata for each column, and informational log events such as row

       query log events if the binlog_rows_query_log_events system variable is

       set to TRUE. The output contains an additional comment following each

       column change:

           $> mysqlbinlog -vv log_file

           ...

           # at 218

           #080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

           BINLOG ' Page 28/38



           fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==

           '/*!*/;

           ### INSERT INTO test.t

           ### SET

           ###   @1=1 /* INT meta=0 nullable=0 is_null=0 */

           ###   @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

           ###   @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

           ...

           # at 302

           #080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP

           '/*!*/;

           ### UPDATE test.t

           ### WHERE

           ###   @1=1 /* INT meta=0 nullable=0 is_null=0 */

           ###   @2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

           ###   @3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

           ### SET

           ###   @1=1 /* INT meta=0 nullable=0 is_null=0 */

           ###   @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

           ###   @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

           ...

           # at 400

           #080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

           BINLOG '

           fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=

           fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP

           '/*!*/;

           ### DELETE FROM test.t

           ### WHERE Page 29/38



           ###   @1=1 /* INT meta=0 nullable=0 is_null=0 */

           ###   @2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

           ###   @3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

       You can tell mysqlbinlog to suppress the BINLOG statements for row

       events by using the --base64-output=DECODE-ROWS option. This is similar

       to --base64-output=NEVER but does not exit with an error if a row event

       is found. The combination of --base64-output=DECODE-ROWS and --verbose

       provides a convenient way to see row events only as SQL statements:

           $> mysqlbinlog -v --base64-output=DECODE-ROWS log_file

           ...

           # at 218

           #080828 15:03:08 server id 1  end_log_pos 258   Write_rows: table id 17 flags: STMT_END_F

           ### INSERT INTO test.t

           ### SET

           ###   @1=1

           ###   @2='apple'

           ###   @3=NULL

           ...

           # at 302

           #080828 15:03:08 server id 1  end_log_pos 356   Update_rows: table id 17 flags: STMT_END_F

           ### UPDATE test.t

           ### WHERE

           ###   @1=1

           ###   @2='apple'

           ###   @3=NULL

           ### SET

           ###   @1=1

           ###   @2='pear'

           ###   @3='2009:01:01'

           ...

           # at 400

           #080828 15:03:08 server id 1  end_log_pos 442   Delete_rows: table id 17 flags: STMT_END_F

           ### DELETE FROM test.t Page 30/38



           ### WHERE

           ###   @1=1

           ###   @2='pear'

           ###   @3='2009:01:01'

           Note

           You should not suppress BINLOG statements if you intend to

           re-execute mysqlbinlog output.

       The SQL statements produced by --verbose for row events are much more

       readable than the corresponding BINLOG statements. However, they do not

       correspond exactly to the original SQL statements that generated the

       events. The following limitations apply:

       ?   The original column names are lost and replaced by @N, where N is a

           column number.

       ?   Character set information is not available in the binary log, which

           affects string column display:

           ?   There is no distinction made between corresponding binary and

               nonbinary string types (BINARY and CHAR, VARBINARY and VARCHAR,

               BLOB and TEXT). The output uses a data type of STRING for

               fixed-length strings and VARSTRING for variable-length strings.

           ?   For multibyte character sets, the maximum number of bytes per

               character is not present in the binary log, so the length for

               string types is displayed in bytes rather than in characters.

               For example, STRING(4) is used as the data type for values from

               either of these column types:

                   CHAR(4) CHARACTER SET latin1

                   CHAR(2) CHARACTER SET ucs2

           ?   Due to the storage format for events of type UPDATE_ROWS_EVENT,

               UPDATE statements are displayed with the WHERE clause preceding

               the SET clause.

       Proper interpretation of row events requires the information from the

       format description event at the beginning of the binary log. Because

       mysqlbinlog does not know in advance whether the rest of the log

       contains row events, by default it displays the format description Page 31/38



       event using a BINLOG statement in the initial part of the output.

       If the binary log is known not to contain any events requiring a BINLOG

       statement (that is, no row events), the --base64-output=NEVER option

       can be used to prevent this header from being written.

USING MYSQLBINLOG TO BACK UP BINARY LOG FILES

       By default, mysqlbinlog reads binary log files and displays their

       contents in text format. This enables you to examine events within the

       files more easily and to re-execute them (for example, by using the

       output as input to mysql).  mysqlbinlog can read log files directly

       from the local file system, or, with the --read-from-remote-server

       option, it can connect to a server and request binary log contents from

       that server.  mysqlbinlog writes text output to its standard output, or

       to the file named as the value of the --result-file=file_name option if

       that option is given.

       ?   mysqlbinlog Backup Capabilities

       ?   mysqlbinlog Backup Options

       ?   Static and Live Backups

       ?   Output File Naming

       ?   Example: mysqldump + mysqlbinlog for Backup and Restore

       ?   mysqlbinlog Backup Restrictions

       mysqlbinlog Backup Capabilities

       mysqlbinlog can read binary log files and write new files containing

       the same content?that is, in binary format rather than text format.

       This capability enables you to easily back up a binary log in its

       original format.  mysqlbinlog can make a static backup, backing up a

       set of log files and stopping when the end of the last file is reached.

       It can also make a continuous (?live?) backup, staying connected to the

       server when it reaches the end of the last log file and continuing to

       copy new events as they are generated. In continuous-backup operation,

       mysqlbinlog runs until the connection ends (for example, when the

       server exits) or mysqlbinlog is forcibly terminated. When the

       connection ends, mysqlbinlog does not wait and retry the connection,

       unlike a replica server. To continue a live backup after the server has Page 32/38



       been restarted, you must also restart mysqlbinlog.

           Important

           mysqlbinlog can back up both encrypted and unencrypted binary log

           files . However, copies of encrypted binary log files that are

           generated using mysqlbinlog are stored in an unencrypted format.

       mysqlbinlog Backup Options

       Binary log backup requires that you invoke mysqlbinlog with two options

       at minimum:

       ?   The --read-from-remote-server (or -R) option tells mysqlbinlog to

           connect to a server and request its binary log. (This is similar to

           a replica server connecting to its replication source server.)

       ?   The --raw option tells mysqlbinlog to write raw (binary) output,

           not text output.

       Along with --read-from-remote-server, it is common to specify other

       options: --host indicates where the server is running, and you may also

       need to specify connection options such as --user and --password.

       Several other options are useful in conjunction with --raw:

       ?   --stop-never: Stay connected to the server after reaching the end

           of the last log file and continue to read new events.

       ?   --connection-server-id=id: The server ID that mysqlbinlog reports

           when it connects to a server. When --stop-never is used, the

           default reported server ID is 1. If this causes a conflict with the

           ID of a replica server or another mysqlbinlog process, use

           --connection-server-id to specify an alternative server ID. See the

           section called ?SPECIFYING THE MYSQLBINLOG SERVER ID?.

       ?   --result-file: A prefix for output file names, as described later.

       Static and Live Backups

       To back up a server's binary log files with mysqlbinlog, you must

       specify file names that actually exist on the server. If you do not

       know the names, connect to the server and use the SHOW BINARY LOGS

       statement to see the current names. Suppose that the statement produces

       this output:

           mysql> SHOW BINARY LOGS; Page 33/38



           +---------------+-----------+-----------+

           | Log_name      | File_size | Encrypted |

           +---------------+-----------+-----------+

           | binlog.000130 |     27459 | No        |

           | binlog.000131 |     13719 | No        |

           | binlog.000132 |     43268 | No        |

           +---------------+-----------+-----------+

       With that information, you can use mysqlbinlog to back up the binary

       log to the current directory as follows (enter each command on a single

       line):

       ?   To make a static backup of binlog.000130 through binlog.000132, use

           either of these commands:

               mysqlbinlog --read-from-remote-server --host=host_name --raw

                 binlog.000130 binlog.000131 binlog.000132

               mysqlbinlog --read-from-remote-server --host=host_name --raw

                 --to-last-log binlog.000130

           The first command specifies every file name explicitly. The second

           names only the first file and uses --to-last-log to read through

           the last. A difference between these commands is that if the server

           happens to open binlog.000133 before mysqlbinlog reaches the end of

           binlog.000132, the first command does not read it, but the second

           command does.

       ?   To make a live backup in which mysqlbinlog starts with

           binlog.000130 to copy existing log files, then stays connected to

           copy new events as the server generates them:

               mysqlbinlog --read-from-remote-server --host=host_name --raw

                 --stop-never binlog.000130

           With --stop-never, it is not necessary to specify --to-last-log to

           read to the last log file because that option is implied.

       Output File Naming

       Without --raw, mysqlbinlog produces text output and the --result-file

       option, if given, specifies the name of the single file to which all

       output is written. With --raw, mysqlbinlog writes one binary output Page 34/38



       file for each log file transferred from the server. By default,

       mysqlbinlog writes the files in the current directory with the same

       names as the original log files. To modify the output file names, use

       the --result-file option. In conjunction with --raw, the --result-file

       option value is treated as a prefix that modifies the output file

       names.

       Suppose that a server currently has binary log files named

       binlog.000999 and up. If you use mysqlbinlog --raw to back up the

       files, the --result-file option produces output file names as shown in

       the following table. You can write the files to a specific directory by

       beginning the --result-file value with the directory path. If the

       --result-file value consists only of a directory name, the value must

       end with the pathname separator character. Output files are overwritten

       if they exist.

       ????????????????????????????????????????????????????

       ?--result-file Option ? Output File Names          ?

       ????????????????????????????????????????????????????

       ?--result-file=x      ? xbinlog.000999 and up      ?

       ????????????????????????????????????????????????????

       ?--result-file=/tmp/  ? /tmp/binlog.000999 and up  ?

       ????????????????????????????????????????????????????

       ?--result-file=/tmp/x ? /tmp/xbinlog.000999 and up ?

       ????????????????????????????????????????????????????

       Example: mysqldump + mysqlbinlog for Backup and Restore

       The following example describes a simple scenario that shows how to use

       mysqldump and mysqlbinlog together to back up a server's data and

       binary log, and how to use the backup to restore the server if data

       loss occurs. The example assumes that the server is running on host

       host_name and its first binary log file is named binlog.000999. Enter

       each command on a single line.

       Use mysqlbinlog to make a continuous backup of the binary log:

           mysqlbinlog --read-from-remote-server --host=host_name --raw

             --stop-never binlog.000999 Page 35/38



       Use mysqldump to create a dump file as a snapshot of the server's data.

       Use --all-databases, --events, and --routines to back up all data, and

       --master-data=2 to include the current binary log coordinates in the

       dump file.

           mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file

       Execute the mysqldump command periodically to create newer snapshots as

       desired.

       If data loss occurs (for example, if the server unexpectedly exits),

       use the most recent dump file to restore the data:

           mysql --host=host_name -u root -p < dump_file

       Then use the binary log backup to re-execute events that were written

       after the coordinates listed in the dump file. Suppose that the

       coordinates in the file look like this:

           -- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;

       If the most recent backed-up log file is named binlog.001004,

       re-execute the log events like this:

           mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004

             | mysql --host=host_name -u root -p

       You might find it easier to copy the backup files (dump file and binary

       log files) to the server host to make it easier to perform the restore

       operation, or if MySQL does not allow remote root access.  mysqlbinlog

       Backup Restrictions

       Binary log backups with mysqlbinlog are subject to these restrictions:

       ?   mysqlbinlog does not automatically reconnect to the MySQL server if

           the connection is lost (for example, if a server restart occurs or

           there is a network outage).

       ?   The delay for a backup is similar to the delay for a replica

           server.

SPECIFYING THE MYSQLBINLOG SERVER ID

       When invoked with the --read-from-remote-server option, mysqlbinlog

       connects to a MySQL server, specifies a server ID to identify itself,

       and requests binary log files from the server. You can use mysqlbinlog

       to request log files from a server in several ways: Page 36/38



       ?   Specify an explicitly named set of files: For each file,

           mysqlbinlog connects and issues a Binlog dump command. The server

           sends the file and disconnects. There is one connection per file.

       ?   Specify the beginning file and --to-last-log: mysqlbinlog connects

           and issues a Binlog dump command for all files. The server sends

           all files and disconnects.

       ?   Specify the beginning file and --stop-never (which implies

           --to-last-log): mysqlbinlog connects and issues a Binlog dump

           command for all files. The server sends all files, but does not

           disconnect after sending the last one.

       With --read-from-remote-server only, mysqlbinlog connects using a

       server ID of 0, which tells the server to disconnect after sending the

       last requested log file.

       With --read-from-remote-server and --stop-never, mysqlbinlog connects

       using a nonzero server ID, so the server does not disconnect after

       sending the last log file. The server ID is 1 by default, but this can

       be changed with --connection-server-id.

       Thus, for the first two ways of requesting files, the server

       disconnects because mysqlbinlog specifies a server ID of 0. It does not

       disconnect if --stop-never is given because mysqlbinlog specifies a

       nonzero server ID.

COPYRIGHT

       Copyright ? 1997, 2023, Oracle and/or its affiliates.

       This documentation is free software; you can redistribute it and/or

       modify it only under the terms of the GNU General Public License as

       published by the Free Software Foundation; version 2 of the License.

       This documentation is distributed in the hope that it will be useful,

       but WITHOUT ANY WARRANTY; without even the implied warranty of

       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

       General Public License for more details.

       You should have received a copy of the GNU General Public License along

       with the program; if not, write to the Free Software Foundation, Inc.,

       51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see Page 37/38



       http://www.gnu.org/licenses/.

NOTES

        1. MySQL Internals: The Binary Log

           https://dev.mysql.com/doc/internals/en/binary-log.html

SEE ALSO

       For more information, please refer to the MySQL Reference Manual, which

       may already be installed locally and which is also available online at

       http://dev.mysql.com/doc/.

AUTHOR

       Oracle Corporation (http://dev.mysql.com/).

MySQL 8.0                         06/02/2023                    MYSQLBINLOG(1)

Page 38/38


