
Rocky Enterprise Linux 9.2 Manual Pages on command 'mq_overview.7'

$ man mq_overview.7

MQ_OVERVIEW(7) Linux Programmer's Manual MQ_OVERVIEW(7)

NAME

 mq_overview - overview of POSIX message queues

DESCRIPTION

 POSIX message queues allow processes to exchange data in the form of

 messages. This API is distinct from that provided by System V message

 queues (msgget(2), msgsnd(2), msgrcv(2), etc.), but provides similar

 functionality.

 Message queues are created and opened using mq_open(3); this function

 returns a message queue descriptor (mqd_t), which is used to refer to

 the open message queue in later calls. Each message queue is identi?

 fied by a name of the form /somename; that is, a null-terminated string

 of up to NAME_MAX (i.e., 255) characters consisting of an initial

 slash, followed by one or more characters, none of which are slashes.

 Two processes can operate on the same queue by passing the same name to

 mq_open(3).

 Messages are transferred to and from a queue using mq_send(3) and

 mq_receive(3). When a process has finished using the queue, it closes Page 1/7

 it using mq_close(3), and when the queue is no longer required, it can

 be deleted using mq_unlink(3). Queue attributes can be retrieved and

 (in some cases) modified using mq_getattr(3) and mq_setattr(3). A

 process can request asynchronous notification of the arrival of a mes?

 sage on a previously empty queue using mq_notify(3).

 A message queue descriptor is a reference to an open message queue de?

 scription (see open(2)). After a fork(2), a child inherits copies of

 its parent's message queue descriptors, and these descriptors refer to

 the same open message queue descriptions as the corresponding message

 queue descriptors in the parent. Corresponding message queue descrip?

 tors in the two processes share the flags (mq_flags) that are associ?

 ated with the open message queue description.

 Each message has an associated priority, and messages are always deliv?

 ered to the receiving process highest priority first. Message priori?

 ties range from 0 (low) to sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On

 Linux, sysconf(_SC_MQ_PRIO_MAX) returns 32768, but POSIX.1 requires

 only that an implementation support at least priorities in the range 0

 to 31; some implementations provide only this range.

 The remainder of this section describes some specific details of the

 Linux implementation of POSIX message queues.

 Library interfaces and system calls

 In most cases the mq_*() library interfaces listed above are imple?

 mented on top of underlying system calls of the same name. Deviations

 from this scheme are indicated in the following table:

 Library interface System call

 mq_close(3) close(2)

 mq_getattr(3) mq_getsetattr(2)

 mq_notify(3) mq_notify(2)

 mq_open(3) mq_open(2)

 mq_receive(3) mq_timedreceive(2)

 mq_send(3) mq_timedsend(2)

 mq_setattr(3) mq_getsetattr(2)

 mq_timedreceive(3) mq_timedreceive(2) Page 2/7

 mq_timedsend(3) mq_timedsend(2)

 mq_unlink(3) mq_unlink(2)

 Versions

 POSIX message queues have been supported on Linux since kernel 2.6.6.

 Glibc support has been provided since version 2.3.4.

 Kernel configuration

 Support for POSIX message queues is configurable via the CON?

 FIG_POSIX_MQUEUE kernel configuration option. This option is enabled

 by default.

 Persistence

 POSIX message queues have kernel persistence: if not removed by mq_un?

 link(3), a message queue will exist until the system is shut down.

 Linking

 Programs using the POSIX message queue API must be compiled with cc

 -lrt to link against the real-time library, librt.

 /proc interfaces

 The following interfaces can be used to limit the amount of kernel mem?

 ory consumed by POSIX message queues and to set the default attributes

 for new message queues:

 /proc/sys/fs/mqueue/msg_default (since Linux 3.5)

 This file defines the value used for a new queue's mq_maxmsg

 setting when the queue is created with a call to mq_open(3)

 where attr is specified as NULL. The default value for this

 file is 10. The minimum and maximum are as for

 /proc/sys/fs/mqueue/msg_max. A new queue's default mq_maxmsg

 value will be the smaller of msg_default and msg_max. Up until

 Linux 2.6.28, the default mq_maxmsg was 10; from Linux 2.6.28 to

 Linux 3.4, the default was the value defined for the msg_max

 limit.

 /proc/sys/fs/mqueue/msg_max

 This file can be used to view and change the ceiling value for

 the maximum number of messages in a queue. This value acts as a

 ceiling on the attr->mq_maxmsg argument given to mq_open(3). Page 3/7

 The default value for msg_max is 10. The minimum value is 1 (10

 in kernels before 2.6.28). The upper limit is HARD_MSGMAX. The

 msg_max limit is ignored for privileged processes (CAP_SYS_RE?

 SOURCE), but the HARD_MSGMAX ceiling is nevertheless imposed.

 The definition of HARD_MSGMAX has changed across kernel ver?

 sions:

 * Up to Linux 2.6.32: 131072 / sizeof(void *)

 * Linux 2.6.33 to 3.4: (32768 * sizeof(void *) / 4)

 * Since Linux 3.5: 65,536

 /proc/sys/fs/mqueue/msgsize_default (since Linux 3.5)

 This file defines the value used for a new queue's mq_msgsize

 setting when the queue is created with a call to mq_open(3)

 where attr is specified as NULL. The default value for this

 file is 8192 (bytes). The minimum and maximum are as for

 /proc/sys/fs/mqueue/msgsize_max. If msgsize_default exceeds ms?

 gsize_max, a new queue's default mq_msgsize value is capped to

 the msgsize_max limit. Up until Linux 2.6.28, the default

 mq_msgsize was 8192; from Linux 2.6.28 to Linux 3.4, the default

 was the value defined for the msgsize_max limit.

 /proc/sys/fs/mqueue/msgsize_max

 This file can be used to view and change the ceiling on the max?

 imum message size. This value acts as a ceiling on the

 attr->mq_msgsize argument given to mq_open(3). The default

 value for msgsize_max is 8192 bytes. The minimum value is 128

 (8192 in kernels before 2.6.28). The upper limit for msg?

 size_max has varied across kernel versions:

 * Before Linux 2.6.28, the upper limit is INT_MAX.

 * From Linux 2.6.28 to 3.4, the limit is 1,048,576.

 * Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).

 The msgsize_max limit is ignored for privileged process

 (CAP_SYS_RESOURCE), but, since Linux 3.5, the HARD_MSGSIZEMAX

 ceiling is enforced for privileged processes.

 /proc/sys/fs/mqueue/queues_max Page 4/7

 This file can be used to view and change the system-wide limit

 on the number of message queues that can be created. The de?

 fault value for queues_max is 256. No ceiling is imposed on the

 queues_max limit; privileged processes (CAP_SYS_RESOURCE) can

 exceed the limit (but see BUGS).

 Resource limit

 The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount

 of space that can be consumed by all of the message queues belonging to

 a process's real user ID, is described in getrlimit(2).

 Mounting the message queue filesystem

 On Linux, message queues are created in a virtual filesystem. (Other

 implementations may also provide such a feature, but the details are

 likely to differ.) This filesystem can be mounted (by the superuser)

 using the following commands:

 # mkdir /dev/mqueue

 # mount -t mqueue none /dev/mqueue

 The sticky bit is automatically enabled on the mount directory.

 After the filesystem has been mounted, the message queues on the system

 can be viewed and manipulated using the commands usually used for files

 (e.g., ls(1) and rm(1)).

 The contents of each file in the directory consist of a single line

 containing information about the queue:

 $ cat /dev/mqueue/mymq

 QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260

 These fields are as follows:

 QSIZE Number of bytes of data in all messages in the queue (but see

 BUGS).

 NOTIFY_PID

 If this is nonzero, then the process with this PID has used

 mq_notify(3) to register for asynchronous message notification,

 and the remaining fields describe how notification occurs.

 NOTIFY Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2

 is SIGEV_THREAD. Page 5/7

 SIGNO Signal number to be used for SIGEV_SIGNAL.

 Linux implementation of message queue descriptors

 On Linux, a message queue descriptor is actually a file descriptor.

 (POSIX does not require such an implementation.) This means that a

 message queue descriptor can be monitored using select(2), poll(2), or

 epoll(7). This is not portable.

 The close-on-exec flag (see open(2)) is automatically set on the file

 descriptor returned by mq_open(2).

 IPC namespaces

 For a discussion of the interaction of POSIX message queue objects and

 IPC namespaces, see ipc_namespaces(7).

NOTES

 System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an

 older API for exchanging messages between processes. POSIX message

 queues provide a better designed interface than System V message

 queues; on the other hand POSIX message queues are less widely avail?

 able (especially on older systems) than System V message queues.

 Linux does not currently (2.6.26) support the use of access control

 lists (ACLs) for POSIX message queues.

BUGS

 In Linux versions 3.5 to 3.14, the kernel imposed a ceiling of 1024

 (HARD_QUEUESMAX) on the value to which the queues_max limit could be

 raised, and the ceiling was enforced even for privileged processes.

 This ceiling value was removed in Linux 3.14, and patches to stable

 kernels 3.5.x to 3.13.x also removed the ceiling.

 As originally implemented (and documented), the QSIZE field displayed

 the total number of (user-supplied) bytes in all messages in the mes?

 sage queue. Some changes in Linux 3.5 inadvertently changed the behav?

 ior, so that this field also included a count of kernel overhead bytes

 used to store the messages in the queue. This behavioral regression

 was rectified in Linux 4.2 (and earlier stable kernel series), so that

 the count once more included just the bytes of user data in messages in

 the queue. Page 6/7

EXAMPLES

 An example of the use of various message queue functions is shown in

 mq_notify(3).

SEE ALSO

 getrlimit(2), mq_getsetattr(2), poll(2), select(2), mq_close(3),

 mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3),

 mq_unlink(3), epoll(7), namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MQ_OVERVIEW(7)

Page 7/7

