
Rocky Enterprise Linux 9.2 Manual Pages on command 'mprotect.2'

$ man mprotect.2

MPROTECT(2) Linux Programmer's Manual MPROTECT(2)

NAME

 mprotect, pkey_mprotect - set protection on a region of memory

SYNOPSIS

 #include <sys/mman.h>

 int mprotect(void *addr, size_t len, int prot);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/mman.h>

 int pkey_mprotect(void *addr, size_t len, int prot, int pkey);

DESCRIPTION

 mprotect() changes the access protections for the calling process's

 memory pages containing any part of the address range in the interval

 [addr, addr+len-1]. addr must be aligned to a page boundary.

 If the calling process tries to access memory in a manner that violates

 the protections, then the kernel generates a SIGSEGV signal for the

 process.

 prot is a combination of the following access flags: PROT_NONE or a

 bitwise-or of the other values in the following list: Page 1/6

 PROT_NONE

 The memory cannot be accessed at all.

 PROT_READ

 The memory can be read.

 PROT_WRITE

 The memory can be modified.

 PROT_EXEC

 The memory can be executed.

 PROT_SEM (since Linux 2.5.7)

 The memory can be used for atomic operations. This flag was in?

 troduced as part of the futex(2) implementation (in order to

 guarantee the ability to perform atomic operations required by

 commands such as FUTEX_WAIT), but is not currently used in on

 any architecture.

 PROT_SAO (since Linux 2.6.26)

 The memory should have strong access ordering. This feature is

 specific to the PowerPC architecture (version 2.06 of the archi?

 tecture specification adds the SAO CPU feature, and it is avail?

 able on POWER 7 or PowerPC A2, for example).

 Additionally (since Linux 2.6.0), prot can have one of the following

 flags set:

 PROT_GROWSUP

 Apply the protection mode up to the end of a mapping that grows

 upwards. (Such mappings are created for the stack area on ar?

 chitectures?for example, HP-PARISC?that have an upwardly growing

 stack.)

 PROT_GROWSDOWN

 Apply the protection mode down to the beginning of a mapping

 that grows downward (which should be a stack segment or a seg?

 ment mapped with the MAP_GROWSDOWN flag set).

 Like mprotect(), pkey_mprotect() changes the protection on the pages

 specified by addr and len. The pkey argument specifies the protection

 key (see pkeys(7)) to assign to the memory. The protection key must be Page 2/6

 allocated with pkey_alloc(2) before it is passed to pkey_mprotect().

 For an example of the use of this system call, see pkeys(7).

RETURN VALUE

 On success, mprotect() and pkey_mprotect() return zero. On error,

 these system calls return -1, and errno is set appropriately.

ERRORS

 EACCES The memory cannot be given the specified access. This can hap?

 pen, for example, if you mmap(2) a file to which you have read-

 only access, then ask mprotect() to mark it PROT_WRITE.

 EINVAL addr is not a valid pointer, or not a multiple of the system

 page size.

 EINVAL (pkey_mprotect()) pkey has not been allocated with pkey_alloc(2)

 EINVAL Both PROT_GROWSUP and PROT_GROWSDOWN were specified in prot.

 EINVAL Invalid flags specified in prot.

 EINVAL (PowerPC architecture) PROT_SAO was specified in prot, but SAO

 hardware feature is not available.

 ENOMEM Internal kernel structures could not be allocated.

 ENOMEM Addresses in the range [addr, addr+len-1] are invalid for the

 address space of the process, or specify one or more pages that

 are not mapped. (Before kernel 2.4.19, the error EFAULT was in?

 correctly produced for these cases.)

 ENOMEM Changing the protection of a memory region would result in the

 total number of mappings with distinct attributes (e.g., read

 versus read/write protection) exceeding the allowed maximum.

 (For example, making the protection of a range PROT_READ in the

 middle of a region currently protected as PROT_READ|PROT_WRITE

 would result in three mappings: two read/write mappings at each

 end and a read-only mapping in the middle.)

VERSIONS

 pkey_mprotect() first appeared in Linux 4.9; library support was added

 in glibc 2.27.

CONFORMING TO

 mprotect(): POSIX.1-2001, POSIX.1-2008, SVr4. POSIX says that the be? Page 3/6

 havior of mprotect() is unspecified if it is applied to a region of

 memory that was not obtained via mmap(2).

 pkey_mprotect() is a nonportable Linux extension.

NOTES

 On Linux, it is always permissible to call mprotect() on any address in

 a process's address space (except for the kernel vsyscall area). In

 particular, it can be used to change existing code mappings to be

 writable.

 Whether PROT_EXEC has any effect different from PROT_READ depends on

 processor architecture, kernel version, and process state. If READ_IM?

 PLIES_EXEC is set in the process's personality flags (see personal?

 ity(2)), specifying PROT_READ will implicitly add PROT_EXEC.

 On some hardware architectures (e.g., i386), PROT_WRITE implies

 PROT_READ.

 POSIX.1 says that an implementation may permit access other than that

 specified in prot, but at a minimum can allow write access only if

 PROT_WRITE has been set, and must not allow any access if PROT_NONE has

 been set.

 Applications should be careful when mixing use of mprotect() and

 pkey_mprotect(). On x86, when mprotect() is used with prot set to

 PROT_EXEC a pkey may be allocated and set on the memory implicitly by

 the kernel, but only when the pkey was 0 previously.

 On systems that do not support protection keys in hardware, pkey_mpro?

 tect() may still be used, but pkey must be set to -1. When called this

 way, the operation of pkey_mprotect() is equivalent to mprotect().

EXAMPLES

 The program below demonstrates the use of mprotect(). The program al?

 locates four pages of memory, makes the third of these pages read-only,

 and then executes a loop that walks upward through the allocated region

 modifying bytes.

 An example of what we might see when running the program is the follow?

 ing:

 $./a.out Page 4/6

 Start of region: 0x804c000

 Got SIGSEGV at address: 0x804e000

 Program source

 #include <unistd.h>

 #include <signal.h>

 #include <stdio.h>

 #include <malloc.h>

 #include <stdlib.h>

 #include <errno.h>

 #include <sys/mman.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 static char *buffer;

 static void

 handler(int sig, siginfo_t *si, void *unused)

 {

 /* Note: calling printf() from a signal handler is not safe

 (and should not be done in production programs), since

 printf() is not async-signal-safe; see signal-safety(7).

 Nevertheless, we use printf() here as a simple way of

 showing that the handler was called. */

 printf("Got SIGSEGV at address: %p\n", si->si_addr);

 exit(EXIT_FAILURE);

 }

 int

 main(int argc, char *argv[])

 {

 int pagesize;

 struct sigaction sa;

 sa.sa_flags = SA_SIGINFO;

 sigemptyset(&sa.sa_mask);

 sa.sa_sigaction = handler;

 if (sigaction(SIGSEGV, &sa, NULL) == -1) Page 5/6

 handle_error("sigaction");

 pagesize = sysconf(_SC_PAGE_SIZE);

 if (pagesize == -1)

 handle_error("sysconf");

 /* Allocate a buffer aligned on a page boundary;

 initial protection is PROT_READ | PROT_WRITE */

 buffer = memalign(pagesize, 4 * pagesize);

 if (buffer == NULL)

 handle_error("memalign");

 printf("Start of region: %p\n", buffer);

 if (mprotect(buffer + pagesize * 2, pagesize,

 PROT_READ) == -1)

 handle_error("mprotect");

 for (char *p = buffer ; ;)

 *(p++) = 'a';

 printf("Loop completed\n"); /* Should never happen */

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 mmap(2), sysconf(3), pkeys(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MPROTECT(2)

Page 6/6

