
Rocky Enterprise Linux 9.2 Manual Pages on command 'mount.fuse3.8'

$ man mount.fuse3.8

fuse(8) System Manager's Manual fuse(8)

NAME

 fuse - configuration and mount options for FUSE file systems

DESCRIPTION

 FUSE (Filesystem in Userspace) is a simple interface for userspace pro?

 grams to export a virtual filesystem to the Linux kernel. FUSE also

 aims to provide a secure method for non privileged users to create and

 mount their own filesystem implementations.

DEFINITIONS

 FUSE The in-kernel filesystem that forwards requests to a user-space

 process.

 filesystem

 The user-space process that responds to requests received from

 the kernel.

 libfuse

 The shared library that most (user-space) filesystems use to

 communicate with FUSE (the kernel filesystem). libfuse also pro?

 vides the fusermount3 (or fusermount if you have older version Page 1/8

 of libfuse) helper to allow non-privileged users to mount

 filesystems.

 filesystem owner

 The user that starts the filesystem and instructs the kernel to

 associate it with a particular mountpoint. The latter is typi?

 cally done by the filesystem itself on start-up. When using lib?

 fuse, this is done by calling the fusermount3 utility.

 client Any process that interacts with the mountpoint.

CONFIGURATION

 Some options regarding mount policy can be set in the file

 /etc/fuse.conf. Currently these options are:

 mount_max = NNN

 Set the maximum number of FUSE mounts allowed to non-root users.

 The default is 1000.

 user_allow_other

 Allow non-root users to specify the allow_other or allow_root

 mount options (see below).

 These limits are enforced by the fusermount3 helper, so they can be

 avoided by filesystems that run as root.

OPTIONS

 Most of the generic mount options described in mount are supported (ro,

 rw, suid, nosuid, dev, nodev, exec, noexec, atime, noatime, sync,

 async, dirsync). Filesystems are mounted with nodev,nosuid by default,

 which can only be overridden by a privileged user.

 General mount options:

 These are FUSE specific mount options that can be specified for all

 filesystems:

 default_permissions

 This option instructs the kernel to perform its own permission

 check instead of deferring all permission checking to the

 filesystem. The check by the kernel is done in addition to any

 permission checks by the filesystem, and both have to succeed

 for an operation to be allowed. The kernel performs a standard Page 2/8

 UNIX permission check (based on mode bits and ownership of the

 directory entry, and uid/gid of the client).

 This mount option is activated implicitly if the filesystem en?

 ables ACL support during the initial feature negotiation when

 opening the device fd. In this case, the kernel performs both

 ACL and standard unix permission checking.

 Filesystems that do not implement any permission checking should

 generally add this option internally.

 allow_other

 This option overrides the security measure restricting file ac?

 cess to the filesystem owner, so that all users (including root)

 can access the files.

 rootmode=M

 Specifies the the file mode of the filesystem's root (in octal

 representation).

 blkdev Mount a filesystem backed by a block device. This is a privi?

 leged option. The device must be specified with the fsname=NAME

 option.

 blksize=N

 Set the block size for the filesystem. This option is only valid

 for 'fuseblk' type mounts. The default is 512.

 In most cases, this option should not be specified by the

 filesystem owner but set internally by the filesystem.

 max_read=N

 With this option the maximum size of read operations can be set.

 The default is infinite, but typically the kernel enforces its

 own limit in addition to this one. A value of zero corresponds

 to no limit.

 This option should not be specified by the filesystem owner. The

 correct (or optimum) value depends on the filesystem implementa?

 tion and should thus be set by the filesystem internally.

 This mount option is deprecated in favor of direct negotiation

 over the device fd (as done for e.g. the maximum size of write Page 3/8

 operations). For the time being, libfuse-using filesystems that

 want to limit the read size must therefore use this mount option

 and set the same value again in the init() handler.

 fd=N The file descriptor to use for communication between the

 userspace filesystem and the kernel. The file descriptor must

 have been obtained by opening the FUSE device (/dev/fuse).

 This option should not be specified by the filesystem owner. It

 is set by libfuse (or, if libfuse is not used, must be set by

 the filesystem itself).

 user_id=N

 group_id=N Specifies the numeric uid/gid of the mount owner.

 This option should not be specified by the filesystem owner. It

 is set by libfuse (or, if libfuse is not used, must be set by

 the filesystem itself).

 fsname=NAME

 Sets the filesystem source (first field in /etc/mtab). The de?

 fault is the name of the filesystem process.

 subtype=TYPE

 Sets the filesystem type (third field in /etc/mtab). The default

 is the name of the filesystem process. If the kernel suppports

 it, /etc/mtab and /proc/mounts will show the filesystem type as

 fuse.TYPE

 If the kernel doesn't support subtypes, the source field will be

 TYPE#NAME, or if fsname option is not specified, just TYPE.

 libfuse-specific mount options:

 These following options are not actually passed to the kernel but in?

 terpreted by libfuse. They can be specified for all filesystems that

 use libfuse:

 allow_root

 This option is similar to allow_other but file access is limited

 to the filesystem owner and root. This option and allow_other

 are mutually exclusive.

 auto_unmount Page 4/8

 This option enables automatic release of the mountpoint if

 filesystem terminates for any reason. Normally the filesystem is

 responsible for releasing the mountpoint, which means that the

 mountpoint becomes inaccessible if the filesystem terminates

 without first unmounting.

 At the moment, this option implies that the filesystem will also

 be mounted with nodev and nosuid (even when mounted by root).

 This restriction may be lifted in the future.

 High-level mount options:

 These following options are not actually passed to the kernel but in?

 terpreted by libfuse. They can only be specified for filesystems that

 use the high-level libfuse API:

 kernel_cache

 This option disables flushing the cache of the file contents on

 every open(2). This should only be enabled on filesystems,

 where the file data is never changed externally (not through the

 mounted FUSE filesystem). Thus it is not suitable for network

 filesystems and other "intermediate" filesystems.

 NOTE: if this option is not specified (and neither direct_io)

 data is still cached after the open(2), so a read(2) system call

 will not always initiate a read operation.

 auto_cache

 This option is an alternative to kernel_cache. Instead of uncon?

 ditionally keeping cached data, the cached data is invalidated

 on open(2) if the modification time or the size of the file has

 changed since it was last opened.

 umask=M

 Override the permission bits in st_mode set by the filesystem.

 The resulting permission bits are the ones missing from the

 given umask value. The value is given in octal representation.

 uid=N Override the st_uid field set by the filesystem (N is numeric).

 gid=N Override the st_gid field set by the filesystem (N is numeric).

 entry_timeout=T Page 5/8

 The timeout in seconds for which name lookups will be cached.

 The default is 1.0 second. For all the timeout options, it is

 possible to give fractions of a second as well (e.g. entry_time?

 out=2.8)

 negative_timeout=T

 The timeout in seconds for which a negative lookup will be

 cached. This means, that if file did not exist (lookup returned

 ENOENT), the lookup will only be redone after the timeout, and

 the file/directory will be assumed to not exist until then. The

 default is 0.0 second, meaning that caching negative lookups are

 disabled.

 attr_timeout=T

 The timeout in seconds for which file/directory attributes are

 cached. The default is 1.0 second.

 ac_attr_timeout=T

 The timeout in seconds for which file attributes are cached for

 the purpose of checking if auto_cache should flush the file data

 on open. The default is the value of attr_timeout

 noforget

 remember=T

 Normally, libfuse assigns inodes to paths only for as long as

 the kernel is aware of them. With this option inodes are instead

 assigned for at least T seconds (or, in the case of noforget,

 the life-time of the filesystem). This will require more memory,

 but may be necessary when using applications that make use of

 inode numbers.

 modules=M1[:M2...]

 Add modules to the filesystem stack. Modules are pushed in the

 order they are specified, with the original filesystem being on

 the bottom of the stack.

 mount.fuse3 options:

 These options are interpreted by mount.fuse3 and are thus only avail?

 able when mounting a file system via mount.fuse3 (such as when mounting Page 6/8

 via the generic mount(1) command or /etc/fstab). Supported options are:

 setuid=USER

 Switch to USER and its primary group before launching the FUSE

 file system process. mount.fuse3 must be run as root or with

 CAP_SETUID and CAP_SETGID for this to work.

 drop_privileges

 Perform setup of the FUSE file descriptor and mounting the file

 system before launching the FUSE file system process.

 mount.fuse3 requires privilege to do so, i.e. must be run as

 root or at least with CAP_SYS_ADMIN and CAP_SETPCAP. It will

 launch the file system process fully unprivileged, i.e. without

 capabilities(7) and prctl(2) flags set up such that privileges

 can't be reacquired (e.g. via setuid or fscaps binaries). This

 reduces risk in the event of the FUSE file system process get?

 ting compromised by malicious file system data.

FUSE MODULES (STACKING)

 Modules are filesystem stacking support to high level API. Filesystem

 modules can be built into libfuse or loaded from shared object

 iconv

 Perform file name character set conversion. Options are:

 from_code=CHARSET

 Character set to convert from (see iconv -l for a list of possi?

 ble values). Default is UTF-8.

 to_code=CHARSET

 Character set to convert to. Default is determined by the cur?

 rent locale.

 subdir

 Prepend a given directory to each path. Options are:

 subdir=DIR

 Directory to prepend to all paths. This option is mandatory.

 rellinks

 Transform absolute symlinks into relative

 norellinks Page 7/8

 Do not transform absolute symlinks into relative. This is the

 default.

SECURITY

 The fusermount3 program is installed set-user-gid to fuse. This is done

 to allow users from fuse group to mount their own filesystem implemen?

 tations. There must however be some limitations, in order to prevent

 Bad User from doing nasty things. Currently those limitations are:

 1. The user can only mount on a mountpoint, for which it has write

 permission

 2. The mountpoint is not a sticky directory which isn't owned by

 the user (like /tmp usually is)

 3. No other user (including root) can access the contents of the

 mounted filesystem.

NOTE

 FUSE filesystems are unmounted using the fusermount3(1) command (fuser?

 mount3 -u mountpoint).

AUTHORS

 FUSE is currently maintained by Nikolaus Rath <Nikolaus@rath.org>

 The original author of FUSE is Miklos Szeredi <mszeredi@inf.bme.hu>.

 This man page was originally written by Bastien Roucaries <rou?

 caries.bastien+debian@gmail.com> for the Debian GNU/Linux distribution.

SEE ALSO

 fusermount3(1) fusermount(1) mount(8)

 fuse(8)

Page 8/8

