
Rocky Enterprise Linux 9.2 Manual Pages on command 'mount.8'

$ man mount.8

MOUNT(8) System Administration MOUNT(8)

NAME

 mount - mount a filesystem

SYNOPSIS

 mount [-h|-V]

 mount [-l] [-t fstype]

 mount -a [-fFnrsvw] [-t fstype] [-O optlist]

 mount [-fnrsvw] [-o options] device|mountpoint

 mount [-fnrsvw] [-t fstype] [-o options] device mountpoint

 mount --bind|--rbind|--move olddir newdir

 mount

 --make-[shared|slave|private|unbindable|rshared|rslave|rprivate|runbindable]

 mountpoint

DESCRIPTION

 All files accessible in a Unix system are arranged in one big tree, the

 file hierarchy, rooted at /. These files can be spread out over several

 devices. The mount command serves to attach the filesystem found on

 some device to the big file tree. Conversely, the umount(8) command Page 1/55

 will detach it again. The filesystem is used to control how data is

 stored on the device or provided in a virtual way by network or other

 services.

 The standard form of the mount command is:

 mount -t type device dir

 This tells the kernel to attach the filesystem found on device (which

 is of type type) at the directory dir. The option -t type is optional.

 The mount command is usually able to detect a filesystem. The root

 permissions are necessary to mount a filesystem by default. See section

 "Non-superuser mounts" below for more details. The previous contents

 (if any) and owner and mode of dir become invisible, and as long as

 this filesystem remains mounted, the pathname dir refers to the root of

 the filesystem on device.

 If only the directory or the device is given, for example:

 mount /dir

 then mount looks for a mountpoint (and if not found then for a device)

 in the /etc/fstab file. It?s possible to use the --target or --source

 options to avoid ambiguous interpretation of the given argument. For

 example:

 mount --target /mountpoint

 The same filesystem may be mounted more than once, and in some cases

 (e.g., network filesystems) the same filesystem may be mounted on the

 same mountpoint multiple times. The mount command does not implement

 any policy to control this behavior. All behavior is controlled by the

 kernel and it is usually specific to the filesystem driver. The

 exception is --all, in this case already mounted filesystems are

 ignored (see --all below for more details).

 Listing the mounts

 The listing mode is maintained for backward compatibility only.

 For more robust and customizable output use findmnt(8), especially in

 your scripts. Note that control characters in the mountpoint name are

 replaced with '?'.

 The following command lists all mounted filesystems (of type type): Page 2/55

 mount [-l] [-t type]

 The option -l adds labels to this listing. See below.

 Indicating the device and filesystem

 Most devices are indicated by a filename (of a block special device),

 like /dev/sda1, but there are other possibilities. For example, in the

 case of an NFS mount, device may look like knuth.cwi.nl:/dir.

 The device names of disk partitions are unstable; hardware

 reconfiguration, and adding or removing a device can cause changes in

 names. This is the reason why it?s strongly recommended to use

 filesystem or partition identifiers like UUID or LABEL. Currently

 supported identifiers (tags):

 LABEL=label

 Human readable filesystem identifier. See also -L.

 UUID=uuid

 Filesystem universally unique identifier. The format of the UUID is

 usually a series of hex digits separated by hyphens. See also -U.

 Note that mount uses UUIDs as strings. The UUIDs from the command

 line or from fstab(5) are not converted to internal binary

 representation. The string representation of the UUID should be

 based on lower case characters.

 PARTLABEL=label

 Human readable partition identifier. This identifier is independent

 on filesystem and does not change by mkfs or mkswap operations It?s

 supported for example for GUID Partition Tables (GPT).

 PARTUUID=uuid

 Partition universally unique identifier. This identifier is

 independent on filesystem and does not change by mkfs or mkswap

 operations It?s supported for example for GUID Partition Tables

 (GPT).

 ID=id

 Hardware block device ID as generated by udevd. This identifier is

 usually based on WWN (unique storage identifier) and assigned by

 the hardware manufacturer. See ls /dev/disk/by-id for more details, Page 3/55

 this directory and running udevd is required. This identifier is

 not recommended for generic use as the identifier is not strictly

 defined and it depends on udev, udev rules and hardware.

 The command lsblk --fs provides an overview of filesystems, LABELs and

 UUIDs on available block devices. The command blkid -p <device>

 provides details about a filesystem on the specified device.

 Don?t forget that there is no guarantee that UUIDs and labels are

 really unique, especially if you move, share or copy the device. Use

 lsblk -o +UUID,PARTUUID to verify that the UUIDs are really unique in

 your system.

 The recommended setup is to use tags (e.g. UUID=uuid) rather than

 /dev/disk/by-{label,uuid,id,partuuid,partlabel} udev symlinks in the

 /etc/fstab file. Tags are more readable, robust and portable. The

 mount(8) command internally uses udev symlinks, so the use of symlinks

 in /etc/fstab has no advantage over tags. For more details see

 libblkid(3).

 The proc filesystem is not associated with a special device, and when

 mounting it, an arbitrary keyword - for example, proc - can be used

 instead of a device specification. (The customary choice none is less

 fortunate: the error message 'none already mounted' from mount can be

 confusing.)

 The files /etc/fstab, /etc/mtab and /proc/mounts

 The file /etc/fstab (see fstab(5)), may contain lines describing what

 devices are usually mounted where, using which options. The default

 location of the fstab(5) file can be overridden with the --fstab path

 command-line option (see below for more details).

 The command

 mount -a [-t type] [-O optlist]

 (usually given in a bootscript) causes all filesystems mentioned in

 fstab (of the proper type and/or having or not having the proper

 options) to be mounted as indicated, except for those whose line

 contains the noauto keyword. Adding the -F option will make mount fork,

 so that the filesystems are mounted in parallel. Page 4/55

 When mounting a filesystem mentioned in fstab or mtab, it suffices to

 specify on the command line only the device, or only the mount point.

 The programs mount and umount(8) traditionally maintained a list of

 currently mounted filesystems in the file /etc/mtab. The support for

 regular classic /etc/mtab is completely disabled at compile time by

 default, because on current Linux systems it is better to make

 /etc/mtab a symlink to /proc/mounts instead. The regular mtab file

 maintained in userspace cannot reliably work with namespaces,

 containers and other advanced Linux features. If the regular mtab

 support is enabled, then it?s possible to use the file as well as the

 symlink.

 If no arguments are given to mount, the list of mounted filesystems is

 printed.

 If you want to override mount options from /etc/fstab, you have to use

 the -o option:

 mount device**|dir -o options

 and then the mount options from the command line will be appended to

 the list of options from /etc/fstab. This default behaviour can be

 changed using the --options-mode command-line option. The usual

 behavior is that the last option wins if there are conflicting ones.

 The mount program does not read the /etc/fstab file if both device (or

 LABEL, UUID, ID, PARTUUID or PARTLABEL) and dir are specified. For

 example, to mount device foo at /dir:

 mount /dev/foo /dir

 This default behaviour can be changed by using the

 --options-source-force command-line option to always read configuration

 from fstab. For non-root users mount always reads the fstab

 configuration.

 Non-superuser mounts

 Normally, only the superuser can mount filesystems. However, when fstab

 contains the user option on a line, anybody can mount the corresponding

 filesystem.

 Thus, given a line Page 5/55

 /dev/cdrom /cd iso9660 ro,user,noauto,unhide

 any user can mount the iso9660 filesystem found on an inserted CDROM

 using the command:

 mount /cd

 Note that mount is very strict about non-root users and all paths

 specified on command line are verified before fstab is parsed or a

 helper program is executed. It?s strongly recommended to use a valid

 mountpoint to specify filesystem, otherwise mount may fail. For example

 it?s a bad idea to use NFS or CIFS source on command line.

 Since util-linux 2.35, mount does not exit when user permissions are

 inadequate according to libmount?s internal security rules. Instead, it

 drops suid permissions and continues as regular non-root user. This

 behavior supports use-cases where root permissions are not necessary

 (e.g., fuse filesystems, user namespaces, etc).

 For more details, see fstab(5). Only the user that mounted a filesystem

 can unmount it again. If any user should be able to unmount it, then

 use users instead of user in the fstab line. The owner option is

 similar to the user option, with the restriction that the user must be

 the owner of the special file. This may be useful e.g. for /dev/fd if a

 login script makes the console user owner of this device. The group

 option is similar, with the restriction that the user must be a member

 of the group of the special file.

 Bind mount operation

 Remount part of the file hierarchy somewhere else. The call is:

 mount --bind olddir newdir

 or by using this fstab entry:

 /olddir /newdir none bind

 After this call the same contents are accessible in two places.

 It is important to understand that "bind" does not create any

 second-class or special node in the kernel VFS. The "bind" is just

 another operation to attach a filesystem. There is nowhere stored

 information that the filesystem has been attached by a "bind"

 operation. The olddir and newdir are independent and the olddir may be Page 6/55

 unmounted.

 One can also remount a single file (on a single file). It?s also

 possible to use a bind mount to create a mountpoint from a regular

 directory, for example:

 mount --bind foo foo

 The bind mount call attaches only (part of) a single filesystem, not

 possible submounts. The entire file hierarchy including submounts can

 be attached a second place by using:

 mount --rbind olddir newdir

 Note that the filesystem mount options maintained by the kernel will

 remain the same as those on the original mount point. The userspace

 mount options (e.g., _netdev) will not be copied by mount and it?s

 necessary to explicitly specify the options on the mount command line.

 Since util-linux 2.27 mount permits changing the mount options by

 passing the relevant options along with --bind. For example:

 mount -o bind,ro foo foo

 This feature is not supported by the Linux kernel; it is implemented in

 userspace by an additional mount(2) remounting system call. This

 solution is not atomic.

 The alternative (classic) way to create a read-only bind mount is to

 use the remount operation, for example:

 mount --bind olddir newdir mount -o remount,bind,ro olddir

 newdir

 Note that a read-only bind will create a read-only mountpoint (VFS

 entry), but the original filesystem superblock will still be writable,

 meaning that the olddir will be writable, but the newdir will be

 read-only.

 It?s also possible to change nosuid, nodev, noexec, noatime, nodiratime

 and relatime VFS entry flags via a "remount,bind" operation. The other

 flags (for example filesystem-specific flags) are silently ignored.

 It?s impossible to change mount options recursively (for example with

 -o rbind,ro).

 Since util-linux 2.31, mount ignores the bind flag from /etc/fstab on a Page 7/55

 remount operation (if "-o remount" is specified on command line). This

 is necessary to fully control mount options on remount by command line.

 In previous versions the bind flag has been always applied and it was

 impossible to re-define mount options without interaction with the bind

 semantic. This mount behavior does not affect situations when

 "remount,bind" is specified in the /etc/fstab file.

 The move operation

 Move a mounted tree to another place (atomically). The call is:

 mount --move olddir newdir

 This will cause the contents which previously appeared under olddir to

 now be accessible under newdir. The physical location of the files is

 not changed. Note that olddir has to be a mountpoint.

 Note also that moving a mount residing under a shared mount is invalid

 and unsupported. Use findmnt -o TARGET,PROPAGATION to see the current

 propagation flags.

 Shared subtree operations

 Since Linux 2.6.15 it is possible to mark a mount and its submounts as

 shared, private, slave or unbindable. A shared mount provides the

 ability to create mirrors of that mount such that mounts and unmounts

 within any of the mirrors propagate to the other mirror. A slave mount

 receives propagation from its master, but not vice versa. A private

 mount carries no propagation abilities. An unbindable mount is a

 private mount which cannot be cloned through a bind operation. The

 detailed semantics are documented in

 Documentation/filesystems/sharedsubtree.txt file in the kernel source

 tree; see also mount_namespaces(7).

 Supported operations are:

 mount --make-shared mountpoint

 mount --make-slave mountpoint

 mount --make-private mountpoint

 mount --make-unbindable mountpoint

 The following commands allow one to recursively change the type of all

 the mounts under a given mountpoint. Page 8/55

 mount --make-rshared mountpoint

 mount --make-rslave mountpoint

 mount --make-rprivate mountpoint

 mount --make-runbindable mountpoint

 mount(8) does not read fstab(5) when a --make-* operation is requested.

 All necessary information has to be specified on the command line.

 Note that the Linux kernel does not allow changing multiple propagation

 flags with a single mount(2) system call, and the flags cannot be mixed

 with other mount options and operations.

 Since util-linux 2.23 the mount command can be used to do more

 propagation (topology) changes by one mount(8) call and do it also

 together with other mount operations. The propagation flags are applied

 by additional mount(2) system calls when the preceding mount operations

 were successful. Note that this use case is not atomic. It is possible

 to specify the propagation flags in fstab(5) as mount options (private,

 slave, shared, unbindable, rprivate, rslave, rshared, runbindable).

 For example:

 mount --make-private --make-unbindable /dev/sda1 /foo

 is the same as:

 mount /dev/sda1 /foo

 mount --make-private /foo

 mount --make-unbindable /foo

COMMAND-LINE OPTIONS

 The full set of mount options used by an invocation of mount is

 determined by first extracting the mount options for the filesystem

 from the fstab table, then applying any options specified by the -o

 argument, and finally applying a -r or -w option, when present.

 The mount command does not pass all command-line options to the

 /sbin/mount.suffix mount helpers. The interface between mount and the

 mount helpers is described below in the section EXTERNAL HELPERS.

 Command-line options available for the mount command are:

 -a, --all

 Mount all filesystems (of the given types) mentioned in fstab Page 9/55

 (except for those whose line contains the noauto keyword). The

 filesystems are mounted following their order in fstab. The mount

 command compares filesystem source, target (and fs root for bind

 mount or btrfs) to detect already mounted filesystems. The kernel

 table with already mounted filesystems is cached during mount

 --all. This means that all duplicated fstab entries will be

 mounted.

 The option --all is possible to use for remount operation too. In

 this case all filters (-t and -O) are applied to the table of

 already mounted filesystems.

 Since version 2.35 is possible to use the command line option -o to

 alter mount options from fstab (see also --options-mode).

 Note that it is a bad practice to use mount -a for fstab checking.

 The recommended solution is findmnt --verify.

 -B, --bind

 Remount a subtree somewhere else (so that its contents are

 available in both places). See above, under Bind mounts.

 -c, --no-canonicalize

 Don?t canonicalize paths. The mount command canonicalizes all paths

 (from the command line or fstab) by default. This option can be

 used together with the -f flag for already canonicalized absolute

 paths. The option is designed for mount helpers which call mount

 -i. It is strongly recommended to not use this command-line option

 for normal mount operations.

 Note that mount does not pass this option to the /sbin/mount.type

 helpers.

 -F, --fork

 (Used in conjunction with -a.) Fork off a new incarnation of mount

 for each device. This will do the mounts on different devices or

 different NFS servers in parallel. This has the advantage that it

 is faster; also NFS timeouts proceed in parallel. A disadvantage is

 that the order of the mount operations is undefined. Thus, you

 cannot use this option if you want to mount both /usr and Page 10/55

 /usr/spool.

 -f, --fake

 Causes everything to be done except for the actual system call; if

 it?s not obvious, this "fakes" mounting the filesystem. This option

 is useful in conjunction with the -v flag to determine what the

 mount command is trying to do. It can also be used to add entries

 for devices that were mounted earlier with the -n option. The -f

 option checks for an existing record in /etc/mtab and fails when

 the record already exists (with a regular non-fake mount, this

 check is done by the kernel).

 -i, --internal-only

 Don?t call the /sbin/mount.filesystem helper even if it exists.

 -L, --label label

 Mount the partition that has the specified label.

 -l, --show-labels

 Add the labels in the mount output. mount must have permission to

 read the disk device (e.g. be set-user-ID root) for this to work.

 One can set such a label for ext2, ext3 or ext4 using the

 e2label(8) utility, or for XFS using xfs_admin(8), or for reiserfs

 using reiserfstune(8).

 -M, --move

 Move a subtree to some other place. See above, the subsection The

 move operation.

 -n, --no-mtab

 Mount without writing in /etc/mtab. This is necessary for example

 when /etc is on a read-only filesystem.

 -N, --namespace ns

 Perform the mount operation in the mount namespace specified by ns.

 ns is either PID of process running in that namespace or special

 file representing that namespace.

 mount switches to the mount namespace when it reads /etc/fstab,

 writes /etc/mtab: (or writes to _/run/mount) and calls the mount(2)

 system call, otherwise it runs in the original mount namespace. Page 11/55

 This means that the target namespace does not have to contain any

 libraries or other requirements necessary to execute the mount(2)

 call.

 See mount_namespaces(7) for more information.

 -O, --test-opts opts

 Limit the set of filesystems to which the -a option applies. In

 this regard it is like the -t option except that -O is useless

 without -a. For example, the command

 mount -a -O no_netdev

 mounts all filesystems except those which have the option netdev

 specified in the options field in the /etc/fstab file.

 It is different from -t in that each option is matched exactly; a

 leading no at the beginning of one option does not negate the rest.

 The -t and -O options are cumulative in effect; that is, the

 command

 mount -a -t ext2 -O _netdev

 mounts all ext2 filesystems with the _netdev option, not all

 filesystems that are either ext2 or have the _netdev option

 specified.

 -o, --options opts

 Use the specified mount options. The opts argument is a

 comma-separated list. For example:

 mount LABEL=mydisk -o noatime,nodev,nosuid

 For more details, see the FILESYSTEM-INDEPENDENT MOUNT OPTIONS and

 FILESYSTEM-SPECIFIC MOUNT OPTIONS sections.

 --options-mode mode

 Controls how to combine options from fstab/mtab with options from

 the command line. mode can be one of ignore, append, prepend or

 replace. For example, append means that options from fstab are

 appended to options from the command line. The default value is

 prepend ? it means command line options are evaluated after fstab

 options. Note that the last option wins if there are conflicting

 ones. Page 12/55

 --options-source source

 Source of default options. source is a comma-separated list of

 fstab, mtab and disable. disable disables fstab and mtab and

 disables --options-source-force. The default value is fstab,mtab.

 --options-source-force

 Use options from fstab/mtab even if both device and dir are

 specified.

 -R, --rbind

 Remount a subtree and all possible submounts somewhere else (so

 that its contents are available in both places). See above, the

 subsection Bind mounts.

 -r, --read-only

 Mount the filesystem read-only. A synonym is -o ro.

 Note that, depending on the filesystem type, state and kernel

 behavior, the system may still write to the device. For example,

 ext3 and ext4 will replay the journal if the filesystem is dirty.

 To prevent this kind of write access, you may want to mount an ext3

 or ext4 filesystem with the ro,noload mount options or set the

 block device itself to read-only mode, see the blockdev(8) command.

 -s

 Tolerate sloppy mount options rather than failing. This will ignore

 mount options not supported by a filesystem type. Not all

 filesystems support this option. Currently it?s supported by the

 mount.nfs mount helper only.

 --source device

 If only one argument for the mount command is given, then the

 argument might be interpreted as the target (mountpoint) or source

 (device). This option allows you to explicitly define that the

 argument is the mount source.

 --target directory

 If only one argument for the mount command is given, then the

 argument might be interpreted as the target (mountpoint) or source

 (device). This option allows you to explicitly define that the Page 13/55

 argument is the mount target.

 --target-prefix directory

 Prepend the specified directory to all mount targets. This option

 can be used to follow fstab, but mount operations are done in

 another place, for example:

 mount --all --target-prefix /chroot -o X-mount.mkdir

 mounts all from system fstab to /chroot, all missing mountpoint are

 created (due to X-mount.mkdir). See also --fstab to use an

 alternative fstab.

 -T, --fstab path

 Specifies an alternative fstab file. If path is a directory, then

 the files in the directory are sorted by strverscmp(3); files that

 start with "." or without an .fstab extension are ignored. The

 option can be specified more than once. This option is mostly

 designed for initramfs or chroot scripts where additional

 configuration is specified beyond standard system configuration.

 Note that mount does not pass the option --fstab to the

 /sbin/mount.type helpers, meaning that the alternative fstab files

 will be invisible for the helpers. This is no problem for normal

 mounts, but user (non-root) mounts always require fstab to verify

 the user?s rights.

 -t, --types fstype

 The argument following the -t is used to indicate the filesystem

 type. The filesystem types which are currently supported depend on

 the running kernel. See /proc/filesystems and /lib/modules/$(uname

 -r)/kernel/fs for a complete list of the filesystems. The most

 common are ext2, ext3, ext4, xfs, btrfs, vfat, sysfs, proc, nfs and

 cifs.

 The programs mount and umount(8) support filesystem subtypes. The

 subtype is defined by a '.subtype' suffix. For example

 'fuse.sshfs'. It?s recommended to use subtype notation rather than

 add any prefix to the mount source (for example 'sshfs#example.com'

 is deprecated). Page 14/55

 If no -t option is given, or if the auto type is specified, mount

 will try to guess the desired type. mount uses the libblkid(3)

 library for guessing the filesystem type; if that does not turn up

 anything that looks familiar, mount will try to read the file

 /etc/filesystems, or, if that does not exist, /proc/filesystems.

 All of the filesystem types listed there will be tried, except for

 those that are labeled "nodev" (e.g. devpts, proc and nfs). If

 /etc/filesystems ends in a line with a single *, mount will read

 /proc/filesystems afterwards. While trying, all filesystem types

 will be mounted with the mount option silent.

 The auto type may be useful for user-mounted floppies. Creating a

 file /etc/filesystems can be useful to change the probe order

 (e.g., to try vfat before msdos or ext3 before ext2) or if you use

 a kernel module autoloader.

 More than one type may be specified in a comma-separated list, for

 the -t option as well as in an /etc/fstab entry. The list of

 filesystem types for the -t option can be prefixed with no to

 specify the filesystem types on which no action should be taken.

 The prefix no has no effect when specified in an /etc/fstab entry.

 The prefix no can be meaningful with the -a option. For example,

 the command

 mount -a -t nomsdos,smbfs

 mounts all filesystems except those of type msdos and smbfs.

 For most types all the mount program has to do is issue a simple

 mount(2) system call, and no detailed knowledge of the filesystem

 type is required. For a few types however (like nfs, nfs4, cifs,

 smbfs, ncpfs) an ad hoc code is necessary. The nfs, nfs4, cifs,

 smbfs, and ncpfs filesystems have a separate mount program. In

 order to make it possible to treat all types in a uniform way,

 mount will execute the program /sbin/mount.type (if that exists)

 when called with type type. Since different versions of the

 smbmount program have different calling conventions,

 /sbin/mount.smbfs may have to be a shell script that sets up the Page 15/55

 desired call.

 -U, --uuid uuid

 Mount the partition that has the specified uuid.

 -v, --verbose

 Verbose mode.

 -w, --rw, --read-write

 Mount the filesystem read/write. Read-write is the kernel default

 and the mount default is to try read-only if the previous mount

 syscall with read-write flags on write-protected devices of

 filesystems failed.

 A synonym is -o rw.

 Note that specifying -w on the command line forces mount to never

 try read-only mount on write-protected devices or already mounted

 read-only filesystems.

 -V, --version

 Display version information and exit.

 -h, --help

 Display help text and exit.

FILESYSTEM-INDEPENDENT MOUNT OPTIONS

 Some of these options are only useful when they appear in the

 /etc/fstab file.

 Some of these options could be enabled or disabled by default in the

 system kernel. To check the current setting see the options in

 /proc/mounts. Note that filesystems also have per-filesystem specific

 default mount options (see for example tune2fs -l output for ext_N_

 filesystems).

 The following options apply to any filesystem that is being mounted

 (but not every filesystem actually honors them - e.g., the sync option

 today has an effect only for ext2, ext3, ext4, fat, vfat, ufs and xfs):

 async

 All I/O to the filesystem should be done asynchronously. (See also

 the sync option.)

 atime Page 16/55

 Do not use the noatime feature, so the inode access time is

 controlled by kernel defaults. See also the descriptions of the

 relatime and strictatime mount options.

 noatime

 Do not update inode access times on this filesystem (e.g. for

 faster access on the news spool to speed up news servers). This

 works for all inode types (directories too), so it implies

 nodiratime.

 auto

 Can be mounted with the -a option.

 noauto

 Can only be mounted explicitly (i.e., the -a option will not cause

 the filesystem to be mounted).

 context=context, fscontext=context, defcontext=context, and

 rootcontext=context

 The context= option is useful when mounting filesystems that do not

 support extended attributes, such as a floppy or hard disk

 formatted with VFAT, or systems that are not normally running under

 SELinux, such as an ext3 or ext4 formatted disk from a non-SELinux

 workstation. You can also use context= on filesystems you do not

 trust, such as a floppy. It also helps in compatibility with

 xattr-supporting filesystems on earlier 2.4.<x> kernel versions.

 Even where xattrs are supported, you can save time not having to

 label every file by assigning the entire disk one security context.

 A commonly used option for removable media is

 context="system_u:object_r:removable_t.

 The fscontext= option works for all filesystems, regardless of

 their xattr support. The fscontext option sets the overarching

 filesystem label to a specific security context. This filesystem

 label is separate from the individual labels on the files. It

 represents the entire filesystem for certain kinds of permission

 checks, such as during mount or file creation. Individual file

 labels are still obtained from the xattrs on the files themselves. Page 17/55

 The context option actually sets the aggregate context that

 fscontext provides, in addition to supplying the same label for

 individual files.

 You can set the default security context for unlabeled files using

 defcontext= option. This overrides the value set for unlabeled

 files in the policy and requires a filesystem that supports xattr

 labeling.

 The rootcontext= option allows you to explicitly label the root

 inode of a FS being mounted before that FS or inode becomes visible

 to userspace. This was found to be useful for things like stateless

 Linux.

 Note that the kernel rejects any remount request that includes the

 context option, even when unchanged from the current context.

 Warning: the context value might contain commas, in which case the

 value has to be properly quoted, otherwise mount will interpret the

 comma as a separator between mount options. Don?t forget that the

 shell strips off quotes and thus double quoting is required. For

 example:

 mount -t tmpfs none /mnt -o \

 'context="system_u:object_r:tmp_t:s0:c127,c456",noexec'

 For more details, see selinux(8).

 defaults

 Use the default options: rw, suid, dev, exec, auto, nouser, and

 async.

 Note that the real set of all default mount options depends on the

 kernel and filesystem type. See the beginning of this section for

 more details.

 dev

 Interpret character or block special devices on the filesystem.

 nodev

 Do not interpret character or block special devices on the

 filesystem.

 diratime Page 18/55

 Update directory inode access times on this filesystem. This is the

 default. (This option is ignored when noatime is set.)

 nodiratime

 Do not update directory inode access times on this filesystem.

 (This option is implied when noatime is set.)

 dirsync

 All directory updates within the filesystem should be done

 synchronously. This affects the following system calls: creat(2),

 link(2), unlink(2), symlink(2), mkdir(2), rmdir(2), mknod(2) and

 rename(2).

 exec

 Permit execution of binaries.

 noexec

 Do not permit direct execution of any binaries on the mounted

 filesystem.

 group

 Allow an ordinary user to mount the filesystem if one of that

 user?s groups matches the group of the device. This option implies

 the options nosuid and nodev (unless overridden by subsequent

 options, as in the option line group,dev,suid).

 iversion

 Every time the inode is modified, the i_version field will be

 incremented.

 noiversion

 Do not increment the i_version inode field.

 mand

 Allow mandatory locks on this filesystem. See fcntl(2).

 nomand

 Do not allow mandatory locks on this filesystem.

 _netdev

 The filesystem resides on a device that requires network access

 (used to prevent the system from attempting to mount these

 filesystems until the network has been enabled on the system). Page 19/55

 nofail

 Do not report errors for this device if it does not exist.

 relatime

 Update inode access times relative to modify or change time. Access

 time is only updated if the previous access time was earlier than

 the current modify or change time. (Similar to noatime, but it

 doesn?t break mutt(1) or other applications that need to know if a

 file has been read since the last time it was modified.)

 Since Linux 2.6.30, the kernel defaults to the behavior provided by

 this option (unless noatime was specified), and the strictatime

 option is required to obtain traditional semantics. In addition,

 since Linux 2.6.30, the file?s last access time is always updated

 if it is more than 1 day old.

 norelatime

 Do not use the relatime feature. See also the strictatime mount

 option.

 strictatime

 Allows to explicitly request full atime updates. This makes it

 possible for the kernel to default to relatime or noatime but still

 allow userspace to override it. For more details about the default

 system mount options see /proc/mounts.

 nostrictatime

 Use the kernel?s default behavior for inode access time updates.

 lazytime

 Only update times (atime, mtime, ctime) on the in-memory version of

 the file inode.

 This mount option significantly reduces writes to the inode table

 for workloads that perform frequent random writes to preallocated

 files.

 The on-disk timestamps are updated only when:

 ? the inode needs to be updated for some change unrelated to file

 timestamps

 ? the application employs fsync(2), syncfs(2), or sync(2) Page 20/55

 ? an undeleted inode is evicted from memory

 ? more than 24 hours have passed since the inode was written to

 disk.

 nolazytime

 Do not use the lazytime feature.

 suid

 Honor set-user-ID and set-group-ID bits or file capabilities when

 executing programs from this filesystem.

 nosuid

 Do not honor set-user-ID and set-group-ID bits or file capabilities

 when executing programs from this filesystem. In addition, SELinux

 domain transitions require permission nosuid_transition, which in

 turn needs also policy capability nnp_nosuid_transition.

 silent

 Turn on the silent flag.

 loud

 Turn off the silent flag.

 owner

 Allow an ordinary user to mount the filesystem if that user is the

 owner of the device. This option implies the options nosuid and

 nodev (unless overridden by subsequent options, as in the option

 line owner,dev,suid).

 remount

 Attempt to remount an already-mounted filesystem. This is commonly

 used to change the mount flags for a filesystem, especially to make

 a readonly filesystem writable. It does not change device or mount

 point.

 The remount operation together with the bind flag has special

 semantics. See above, the subsection Bind mounts.

 The remount functionality follows the standard way the mount

 command works with options from fstab. This means that mount does

 not read fstab (or mtab) only when both device and dir are

 specified. Page 21/55

 mount -o remount,rw /dev/foo /dir

 After this call all old mount options are replaced and arbitrary

 stuff from fstab (or mtab) is ignored, except the loop= option

 which is internally generated and maintained by the mount command.

 mount -o remount,rw /dir

 After this call, mount reads fstab and merges these options with

 the options from the command line (-o). If no mountpoint is found

 in fstab, then a remount with unspecified source is allowed.

 mount allows the use of --all to remount all already mounted

 filesystems which match a specified filter (-O and -t). For

 example:

 mount --all -o remount,ro -t vfat

 remounts all already mounted vfat filesystems in read-only mode.

 Each of the filesystems is remounted by mount -o remount,ro /dir

 semantic. This means the mount command reads fstab or mtab and

 merges these options with the options from the command line.

 ro

 Mount the filesystem read-only.

 rw

 Mount the filesystem read-write.

 sync

 All I/O to the filesystem should be done synchronously. In the case

 of media with a limited number of write cycles (e.g. some flash

 drives), sync may cause life-cycle shortening.

 user

 Allow an ordinary user to mount the filesystem. The name of the

 mounting user is written to the mtab file (or to the private

 libmount file in /run/mount on systems without a regular mtab) so

 that this same user can unmount the filesystem again. This option

 implies the options noexec, nosuid, and nodev (unless overridden by

 subsequent options, as in the option line user,exec,dev,suid).

 nouser

 Forbid an ordinary user to mount the filesystem. This is the Page 22/55

 default; it does not imply any other options.

 users

 Allow any user to mount and to unmount the filesystem, even when

 some other ordinary user mounted it. This option implies the

 options noexec, nosuid, and nodev (unless overridden by subsequent

 options, as in the option line users,exec,dev,suid).

 X-*

 All options prefixed with "X-" are interpreted as comments or as

 userspace application-specific options. These options are not

 stored in user space (e.g., mtab file), nor sent to the mount.type

 helpers nor to the mount(2) system call. The suggested format is

 X-appname.option.

 x-*

 The same as X-* options, but stored permanently in user space. This

 means the options are also available for umount(8) or other

 operations. Note that maintaining mount options in user space is

 tricky, because it?s necessary use libmount-based tools and there

 is no guarantee that the options will be always available (for

 example after a move mount operation or in unshared namespace).

 Note that before util-linux v2.30 the x-* options have not been

 maintained by libmount and stored in user space (functionality was

 the same as for X-* now), but due to the growing number of

 use-cases (in initrd, systemd etc.) the functionality has been

 extended to keep existing fstab configurations usable without a

 change.

 X-mount.mkdir[=mode]

 Allow to make a target directory (mountpoint) if it does not exit

 yet. The optional argument mode specifies the filesystem access

 mode used for mkdir(2) in octal notation. The default mode is 0755.

 This functionality is supported only for root users or when mount

 executed without suid permissions. The option is also supported as

 x-mount.mkdir, this notation is deprecated since v2.30.

 nosymfollow Page 23/55

 Do not follow symlinks when resolving paths. Symlinks can still be

 created, and readlink(1), readlink(2), realpath(1), and realpath(3)

 all still work properly.

FILESYSTEM-SPECIFIC MOUNT OPTIONS

 This section lists options that are specific to particular filesystems.

 Where possible, you should first consult filesystem-specific manual

 pages for details. Some of those pages are listed in the following

 table.

 ???????????????????????????????????

 ? ? ?

 ?Filesystem(s) ? Manual page ?

 ???????????????????????????????????

 ? ? ?

 ?btrfs ? btrfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?cifs ? mount.cifs(8) ?

 ???????????????????????????????????

 ? ? ?

 ?ext2, ext3, ext4 ? ext4(5) ?

 ???????????????????????????????????

 ? ? ?

 ?fuse ? fuse(8) ?

 ???????????????????????????????????

 ? ? ?

 ?nfs ? nfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?tmpfs ? tmpfs(5) ?

 ???????????????????????????????????

 ? ? ?

 ?xfs ? xfs(5) ?

 ??????????????????????????????????? Page 24/55

 Note that some of the pages listed above might be available only after

 you install the respective userland tools.

 The following options apply only to certain filesystems. We sort them

 by filesystem. All options follow the -o flag.

 What options are supported depends a bit on the running kernel. Further

 information may be available in filesystem-specific files in the kernel

 source subdirectory Documentation/filesystems.

 Mount options for adfs

 uid=value and gid=value

 Set the owner and group of the files in the filesystem (default:

 uid=gid=0).

 ownmask=value and othmask=value

 Set the permission mask for ADFS 'owner' permissions and 'other'

 permissions, respectively (default: 0700 and 0077, respectively).

 See also /usr/src/linux/Documentation/filesystems/adfs.rst.

 Mount options for affs

 uid=value and gid=value

 Set the owner and group of the root of the filesystem (default:

 uid=gid=0, but with option uid or gid without specified value, the

 UID and GID of the current process are taken).

 setuid=value and setgid=value

 Set the owner and group of all files.

 mode=value

 Set the mode of all files to value & 0777 disregarding the original

 permissions. Add search permission to directories that have read

 permission. The value is given in octal.

 protect

 Do not allow any changes to the protection bits on the filesystem.

 usemp

 Set UID and GID of the root of the filesystem to the UID and GID of

 the mount point upon the first sync or umount, and then clear this

 option. Strange...

 verbose Page 25/55

 Print an informational message for each successful mount.

 prefix=string

 Prefix used before volume name, when following a link.

 volume=string

 Prefix (of length at most 30) used before '/' when following a

 symbolic link.

 reserved=value

 (Default: 2.) Number of unused blocks at the start of the device.

 root=value

 Give explicitly the location of the root block.

 bs=value

 Give blocksize. Allowed values are 512, 1024, 2048, 4096.

 grpquota|noquota|quota|usrquota

 These options are accepted but ignored. (However, quota utilities

 may react to such strings in /etc/fstab.)

 Mount options for debugfs

 The debugfs filesystem is a pseudo filesystem, traditionally mounted on

 /sys/kernel/debug. As of kernel version 3.4, debugfs has the following

 options:

 uid=n, gid=n

 Set the owner and group of the mountpoint.

 mode=value

 Sets the mode of the mountpoint.

 Mount options for devpts

 The devpts filesystem is a pseudo filesystem, traditionally mounted on

 /dev/pts. In order to acquire a pseudo terminal, a process opens

 /dev/ptmx; the number of the pseudo terminal is then made available to

 the process and the pseudo terminal slave can be accessed as

 /dev/pts/<number>.

 uid=value and gid=value

 This sets the owner or the group of newly created pseudo terminals

 to the specified values. When nothing is specified, they will be

 set to the UID and GID of the creating process. For example, if Page 26/55

 there is a tty group with GID 5, then gid=5 will cause newly

 created pseudo terminals to belong to the tty group.

 mode=value

 Set the mode of newly created pseudo terminals to the specified

 value. The default is 0600. A value of mode=620 and gid=5 makes

 "mesg y" the default on newly created pseudo terminals.

 newinstance

 Create a private instance of the devpts filesystem, such that

 indices of pseudo terminals allocated in this new instance are

 independent of indices created in other instances of devpts.

 All mounts of devpts without this newinstance option share the same

 set of pseudo terminal indices (i.e., legacy mode). Each mount of

 devpts with the newinstance option has a private set of pseudo

 terminal indices.

 This option is mainly used to support containers in the Linux

 kernel. It is implemented in Linux kernel versions starting with

 2.6.29. Further, this mount option is valid only if

 CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel

 configuration.

 To use this option effectively, /dev/ptmx must be a symbolic link

 to pts/ptmx. See Documentation/filesystems/devpts.txt in the Linux

 kernel source tree for details.

 ptmxmode=value

 Set the mode for the new ptmx device node in the devpts filesystem.

 With the support for multiple instances of devpts (see newinstance

 option above), each instance has a private ptmx node in the root of

 the devpts filesystem (typically /dev/pts/ptmx).

 For compatibility with older versions of the kernel, the default

 mode of the new ptmx node is 0000. ptmxmode=value specifies a more

 useful mode for the ptmx node and is highly recommended when the

 newinstance option is specified.

 This option is only implemented in Linux kernel versions starting

 with 2.6.29. Further, this option is valid only if Page 27/55

 CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel

 configuration.

 Mount options for fat

 (Note: fat is not a separate filesystem, but a common part of the

 msdos, umsdos and vfat filesystems.)

 blocksize={512|1024|2048}

 Set blocksize (default 512). This option is obsolete.

 uid=value and gid=value

 Set the owner and group of all files. (Default: the UID and GID of

 the current process.)

 umask=value

 Set the umask (the bitmask of the permissions that are not

 present). The default is the umask of the current process. The

 value is given in octal.

 dmask=value

 Set the umask applied to directories only. The default is the umask

 of the current process. The value is given in octal.

 fmask=value

 Set the umask applied to regular files only. The default is the

 umask of the current process. The value is given in octal.

 allow_utime=value

 This option controls the permission check of mtime/atime.

 20

 If current process is in group of file?s group ID, you can

 change timestamp.

 2

 Other users can change timestamp.

 The default is set from 'dmask' option. (If the directory is writable,

 utime(2) is also allowed. I.e. ~dmask & 022)

 Normally utime(2) checks that the current process is owner of the file,

 or that it has the CAP_FOWNER capability. But FAT filesystems don?t

 have UID/GID on disk, so the normal check is too inflexible. With this

 option you can relax it. Page 28/55

 check=value

 Three different levels of pickiness can be chosen:

 r[elaxed]

 Upper and lower case are accepted and equivalent, long name

 parts are truncated (e.g. verylongname.foobar becomes

 verylong.foo), leading and embedded spaces are accepted in each

 name part (name and extension).

 n[ormal]

 Like "relaxed", but many special characters (*, ?, <, spaces,

 etc.) are rejected. This is the default.

 s[trict]

 Like "normal", but names that contain long parts or special

 characters that are sometimes used on Linux but are not

 accepted by MS-DOS (+, =, etc.) are rejected.

 codepage=value

 Sets the codepage for converting to shortname characters on FAT and

 VFAT filesystems. By default, codepage 437 is used.

 conv=mode

 This option is obsolete and may fail or be ignored.

 cvf_format=module

 Forces the driver to use the CVF (Compressed Volume File) module

 cvf__module_ instead of auto-detection. If the kernel supports

 kmod, the cvf_format=xxx option also controls on-demand CVF module

 loading. This option is obsolete.

 cvf_option=option

 Option passed to the CVF module. This option is obsolete.

 debug

 Turn on the debug flag. A version string and a list of filesystem

 parameters will be printed (these data are also printed if the

 parameters appear to be inconsistent).

 discard

 If set, causes discard/TRIM commands to be issued to the block

 device when blocks are freed. This is useful for SSD devices and Page 29/55

 sparse/thinly-provisioned LUNs.

 dos1xfloppy

 If set, use a fallback default BIOS Parameter Block configuration,

 determined by backing device size. These static parameters match

 defaults assumed by DOS 1.x for 160 kiB, 180 kiB, 320 kiB, and 360

 kiB floppies and floppy images.

 errors={panic|continue|remount-ro}

 Specify FAT behavior on critical errors: panic, continue without

 doing anything, or remount the partition in read-only mode (default

 behavior).

 fat={12|16|32}

 Specify a 12, 16 or 32 bit fat. This overrides the automatic FAT

 type detection routine. Use with caution!

 iocharset=value

 Character set to use for converting between 8 bit characters and 16

 bit Unicode characters. The default is iso8859-1. Long filenames

 are stored on disk in Unicode format.

 nfs={stale_rw|nostale_ro}

 Enable this only if you want to export the FAT filesystem over NFS.

 stale_rw: This option maintains an index (cache) of directory

 inodes which is used by the nfs-related code to improve look-ups.

 Full file operations (read/write) over NFS are supported but with

 cache eviction at NFS server, this could result in spurious ESTALE

 errors.

 nostale_ro: This option bases the inode number and file handle on

 the on-disk location of a file in the FAT directory entry. This

 ensures that ESTALE will not be returned after a file is evicted

 from the inode cache. However, it means that operations such as

 rename, create and unlink could cause file handles that previously

 pointed at one file to point at a different file, potentially

 causing data corruption. For this reason, this option also mounts

 the filesystem readonly.

 To maintain backward compatibility, -o nfs is also accepted, Page 30/55

 defaulting to stale_rw.

 tz=UTC

 This option disables the conversion of timestamps between local

 time (as used by Windows on FAT) and UTC (which Linux uses

 internally). This is particularly useful when mounting devices

 (like digital cameras) that are set to UTC in order to avoid the

 pitfalls of local time.

 time_offset=minutes

 Set offset for conversion of timestamps from local time used by FAT

 to UTC. I.e., minutes will be subtracted from each timestamp to

 convert it to UTC used internally by Linux. This is useful when the

 time zone set in the kernel via settimeofday(2) is not the time

 zone used by the filesystem. Note that this option still does not

 provide correct time stamps in all cases in presence of DST - time

 stamps in a different DST setting will be off by one hour.

 quiet

 Turn on the quiet flag. Attempts to chown or chmod files do not

 return errors, although they fail. Use with caution!

 rodir

 FAT has the ATTR_RO (read-only) attribute. On Windows, the ATTR_RO

 of the directory will just be ignored, and is used only by

 applications as a flag (e.g. it?s set for the customized folder).

 If you want to use ATTR_RO as read-only flag even for the

 directory, set this option.

 showexec

 If set, the execute permission bits of the file will be allowed

 only if the extension part of the name is .EXE, .COM, or .BAT. Not

 set by default.

 sys_immutable

 If set, ATTR_SYS attribute on FAT is handled as IMMUTABLE flag on

 Linux. Not set by default.

 flush

 If set, the filesystem will try to flush to disk more early than Page 31/55

 normal. Not set by default.

 usefree

 Use the "free clusters" value stored on FSINFO. It?ll be used to

 determine number of free clusters without scanning disk. But it?s

 not used by default, because recent Windows don?t update it

 correctly in some case. If you are sure the "free clusters" on

 FSINFO is correct, by this option you can avoid scanning disk.

 dots, nodots, dotsOK=[yes|no]

 Various misguided attempts to force Unix or DOS conventions onto a

 FAT filesystem.

 Mount options for hfs

 creator=cccc, type=cccc

 Set the creator/type values as shown by the MacOS finder used for

 creating new files. Default values: '????'.

 uid=n, gid=n

 Set the owner and group of all files. (Default: the UID and GID of

 the current process.)

 dir_umask=n, file_umask=n, umask=n

 Set the umask used for all directories, all regular files, or all

 files and directories. Defaults to the umask of the current

 process.

 session=n

 Select the CDROM session to mount. Defaults to leaving that

 decision to the CDROM driver. This option will fail with anything

 but a CDROM as underlying device.

 part=n

 Select partition number n from the device. Only makes sense for

 CDROMs. Defaults to not parsing the partition table at all.

 quiet

 Don?t complain about invalid mount options.

 Mount options for hpfs

 uid=value and gid=value

 Set the owner and group of all files. (Default: the UID and GID of Page 32/55

 the current process.)

 umask=value

 Set the umask (the bitmask of the permissions that are not

 present). The default is the umask of the current process. The

 value is given in octal.

 case={lower|asis}

 Convert all files names to lower case, or leave them. (Default:

 case=lower.)

 conv=mode

 This option is obsolete and may fail or being ignored.

 nocheck

 Do not abort mounting when certain consistency checks fail.

 Mount options for iso9660

 ISO 9660 is a standard describing a filesystem structure to be used on

 CD-ROMs. (This filesystem type is also seen on some DVDs. See also the

 udf filesystem.)

 Normal iso9660 filenames appear in an 8.3 format (i.e., DOS-like

 restrictions on filename length), and in addition all characters are in

 upper case. Also there is no field for file ownership, protection,

 number of links, provision for block/character devices, etc.

 Rock Ridge is an extension to iso9660 that provides all of these

 UNIX-like features. Basically there are extensions to each directory

 record that supply all of the additional information, and when Rock

 Ridge is in use, the filesystem is indistinguishable from a normal UNIX

 filesystem (except that it is read-only, of course).

 norock

 Disable the use of Rock Ridge extensions, even if available. Cf.

 map.

 nojoliet

 Disable the use of Microsoft Joliet extensions, even if available.

 Cf. map.

 check={r[elaxed]|s[trict]}

 With check=relaxed, a filename is first converted to lower case Page 33/55

 before doing the lookup. This is probably only meaningful together

 with norock and map=normal. (Default: check=strict.)

 uid=value and gid=value

 Give all files in the filesystem the indicated user or group id,

 possibly overriding the information found in the Rock Ridge

 extensions. (Default: uid=0,gid=0.)

 map={n[ormal]|o[ff]|a[corn]}

 For non-Rock Ridge volumes, normal name translation maps upper to

 lower case ASCII, drops a trailing ';1', and converts ';' to '.'.

 With map=off no name translation is done. See norock. (Default:

 map=normal.) map=acorn is like map=normal but also apply Acorn

 extensions if present.

 mode=value

 For non-Rock Ridge volumes, give all files the indicated mode.

 (Default: read and execute permission for everybody.) Octal mode

 values require a leading 0.

 unhide

 Also show hidden and associated files. (If the ordinary files and

 the associated or hidden files have the same filenames, this may

 make the ordinary files inaccessible.)

 block={512|1024|2048}

 Set the block size to the indicated value. (Default: block=1024.)

 conv=mode

 This option is obsolete and may fail or being ignored.

 cruft

 If the high byte of the file length contains other garbage, set

 this mount option to ignore the high order bits of the file length.

 This implies that a file cannot be larger than 16 MB.

 session=x

 Select number of session on a multisession CD.

 sbsector=xxx

 Session begins from sector xxx.

 The following options are the same as for vfat and specifying them only Page 34/55

 makes sense when using discs encoded using Microsoft?s Joliet

 extensions.

 iocharset=value

 Character set to use for converting 16 bit Unicode characters on CD

 to 8 bit characters. The default is iso8859-1.

 utf8

 Convert 16 bit Unicode characters on CD to UTF-8.

 Mount options for jfs

 iocharset=name

 Character set to use for converting from Unicode to ASCII. The

 default is to do no conversion. Use iocharset=utf8 for UTF8

 translations. This requires CONFIG_NLS_UTF8 to be set in the kernel

 .config file.

 resize=value

 Resize the volume to value blocks. JFS only supports growing a

 volume, not shrinking it. This option is only valid during a

 remount, when the volume is mounted read-write. The resize keyword

 with no value will grow the volume to the full size of the

 partition.

 nointegrity

 Do not write to the journal. The primary use of this option is to

 allow for higher performance when restoring a volume from backup

 media. The integrity of the volume is not guaranteed if the system

 abnormally ends.

 integrity

 Default. Commit metadata changes to the journal. Use this option to

 remount a volume where the nointegrity option was previously

 specified in order to restore normal behavior.

 errors={continue|remount-ro|panic}

 Define the behavior when an error is encountered. (Either ignore

 errors and just mark the filesystem erroneous and continue, or

 remount the filesystem read-only, or panic and halt the system.)

 noquota|quota|usrquota|grpquota Page 35/55

 These options are accepted but ignored.

 Mount options for msdos

 See mount options for fat. If the msdos filesystem detects an

 inconsistency, it reports an error and sets the file system read-only.

 The filesystem can be made writable again by remounting it.

 Mount options for ncpfs

 Just like nfs, the ncpfs implementation expects a binary argument (a

 struct ncp_mount_data) to the mount system call. This argument is

 constructed by ncpmount(8) and the current version of mount (2.12) does

 not know anything about ncpfs.

 Mount options for ntfs

 iocharset=name

 Character set to use when returning file names. Unlike VFAT, NTFS

 suppresses names that contain nonconvertible characters.

 Deprecated.

 nls=name

 New name for the option earlier called iocharset.

 utf8

 Use UTF-8 for converting file names.

 uni_xlate={0|1|2}

 For 0 (or 'no' or 'false'), do not use escape sequences for unknown

 Unicode characters. For 1 (or 'yes' or 'true') or 2, use vfat-style

 4-byte escape sequences starting with ":". Here 2 gives a

 little-endian encoding and 1 a byteswapped bigendian encoding.

 posix=[0|1]

 If enabled (posix=1), the filesystem distinguishes between upper

 and lower case. The 8.3 alias names are presented as hard links

 instead of being suppressed. This option is obsolete.

 uid=value, gid=value and umask=value

 Set the file permission on the filesystem. The umask value is given

 in octal. By default, the files are owned by root and not readable

 by somebody else.

 Mount options for overlay Page 36/55

 Since Linux 3.18 the overlay pseudo filesystem implements a union mount

 for other filesystems.

 An overlay filesystem combines two filesystems - an upper filesystem

 and a lower filesystem. When a name exists in both filesystems, the

 object in the upper filesystem is visible while the object in the lower

 filesystem is either hidden or, in the case of directories, merged with

 the upper object.

 The lower filesystem can be any filesystem supported by Linux and does

 not need to be writable. The lower filesystem can even be another

 overlayfs. The upper filesystem will normally be writable and if it is

 it must support the creation of trusted.* extended attributes, and must

 provide a valid d_type in readdir responses, so NFS is not suitable.

 A read-only overlay of two read-only filesystems may use any filesystem

 type. The options lowerdir and upperdir are combined into a merged

 directory by using:

 mount -t overlay overlay \

 -olowerdir=/lower,upperdir=/upper,workdir=/work /merged

 lowerdir=directory

 Any filesystem, does not need to be on a writable filesystem.

 upperdir=directory

 The upperdir is normally on a writable filesystem.

 workdir=directory

 The workdir needs to be an empty directory on the same filesystem

 as upperdir.

 userxattr

 Use the "user.overlay." xattr namespace instead of

 "trusted.overlay.". This is useful for unprivileged mounting of

 overlayfs.

 redirect_dir={on|off|follow|nofollow}

 If the redirect_dir feature is enabled, then the directory will be

 copied up (but not the contents). Then the

 "{trusted|user}.overlay.redirect" extended attribute is set to the

 path of the original location from the root of the overlay. Finally Page 37/55

 the directory is moved to the new location.

 on

 Redirects are enabled.

 off

 Redirects are not created and only followed if

 "redirect_always_follow" feature is enabled in the

 kernel/module config.

 follow

 Redirects are not created, but followed.

 nofollow

 Redirects are not created and not followed (equivalent to

 "redirect_dir=off" if "redirect_always_follow" feature is not

 enabled).

 index={on|off}

 Inode index. If this feature is disabled and a file with multiple

 hard links is copied up, then this will "break" the link. Changes

 will not be propagated to other names referring to the same inode.

 uuid={on|off}

 Can be used to replace UUID of the underlying filesystem in file

 handles with null, and effectively disable UUID checks. This can be

 useful in case the underlying disk is copied and the UUID of this

 copy is changed. This is only applicable if all lower/upper/work

 directories are on the same filesystem, otherwise it will fallback

 to normal behaviour.

 nfs_export={on|off}

 When the underlying filesystems supports NFS export and the

 "nfs_export" feature is enabled, an overlay filesystem may be

 exported to NFS.

 With the ?nfs_export? feature, on copy_up of any lower object, an

 index entry is created under the index directory. The index entry

 name is the hexadecimal representation of the copy up origin file

 handle. For a non-directory object, the index entry is a hard link

 to the upper inode. For a directory object, the index entry has an Page 38/55

 extended attribute "{trusted|user}.overlay.upper" with an encoded

 file handle of the upper directory inode.

 When encoding a file handle from an overlay filesystem object, the

 following rules apply

 ? For a non-upper object, encode a lower file handle from

 lower inode

 ? For an indexed object, encode a lower file handle from

 copy_up origin

 ? For a pure-upper object and for an existing non-indexed

 upper object, encode an upper file handle from upper inode

 The encoded overlay file handle includes

 ? Header including path type information (e.g. lower/upper)

 ? UUID of the underlying filesystem

 ? Underlying filesystem encoding of underlying inode

 This encoding format is identical to the encoding format file

 handles that are stored in extended attribute

 "{trusted|user}.overlay.origin". When decoding an overlay file

 handle, the following steps are followed

 ? Find underlying layer by UUID and path type information.

 ? Decode the underlying filesystem file handle to underlying

 dentry.

 ? For a lower file handle, lookup the handle in index

 directory by name.

 ? If a whiteout is found in index, return ESTALE. This

 represents an overlay object that was deleted after its

 file handle was encoded.

 ? For a non-directory, instantiate a disconnected overlay

 dentry from the decoded underlying dentry, the path type

 and index inode, if found.

 ? For a directory, use the connected underlying decoded

 dentry, path type and index, to lookup a connected overlay

 dentry.

 Decoding a non-directory file handle may return a disconnected Page 39/55

 dentry. copy_up of that disconnected dentry will create an upper

 index entry with no upper alias.

 When overlay filesystem has multiple lower layers, a middle layer

 directory may have a "redirect" to lower directory. Because middle

 layer "redirects" are not indexed, a lower file handle that was

 encoded from the "redirect" origin directory, cannot be used to

 find the middle or upper layer directory. Similarly, a lower file

 handle that was encoded from a descendant of the "redirect" origin

 directory, cannot be used to reconstruct a connected overlay path.

 To mitigate the cases of directories that cannot be decoded from a

 lower file handle, these directories are copied up on encode and

 encoded as an upper file handle. On an overlay filesystem with no

 upper layer this mitigation cannot be used NFS export in this setup

 requires turning off redirect follow (e.g.

 "redirect_dir=nofollow").

 The overlay filesystem does not support non-directory connectable

 file handles, so exporting with the subtree_check exportfs

 configuration will cause failures to lookup files over NFS.

 When the NFS export feature is enabled, all directory index entries

 are verified on mount time to check that upper file handles are not

 stale. This verification may cause significant overhead in some

 cases.

 Note: the mount options index=off,nfs_export=on are conflicting for

 a read-write mount and will result in an error.

 xinfo={on|off|auto}

 The "xino" feature composes a unique object identifier from the

 real object st_ino and an underlying fsid index. The "xino" feature

 uses the high inode number bits for fsid, because the underlying

 filesystems rarely use the high inode number bits. In case the

 underlying inode number does overflow into the high xino bits,

 overlay filesystem will fall back to the non xino behavior for that

 inode.

 For a detailed description of the effect of this option please Page 40/55

 refer to

 https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html?highlight=overlayfs

 metacopy={on|off}

 When metadata only copy up feature is enabled, overlayfs will only

 copy up metadata (as opposed to whole file), when a metadata

 specific operation like chown/chmod is performed. Full file will be

 copied up later when file is opened for WRITE operation.

 In other words, this is delayed data copy up operation and data is

 copied up when there is a need to actually modify data.

 volatile

 Volatile mounts are not guaranteed to survive a crash. It is

 strongly recommended that volatile mounts are only used if data

 written to the overlay can be recreated without significant effort.

 The advantage of mounting with the "volatile" option is that all

 forms of sync calls to the upper filesystem are omitted.

 In order to avoid a giving a false sense of safety, the syncfs (and

 fsync) semantics of volatile mounts are slightly different than

 that of the rest of VFS. If any writeback error occurs on the

 upperdir?s filesystem after a volatile mount takes place, all sync

 functions will return an error. Once this condition is reached, the

 filesystem will not recover, and every subsequent sync call will

 return an error, even if the upperdir has not experience a new

 error since the last sync call.

 When overlay is mounted with "volatile" option, the directory

 "$workdir/work/incompat/volatile" is created. During next mount,

 overlay checks for this directory and refuses to mount if present.

 This is a strong indicator that user should throw away upper and

 work directories and create fresh one. In very limited cases where

 the user knows that the system has not crashed and contents of

 upperdir are intact, The "volatile" directory can be removed.

 Mount options for reiserfs

 Reiserfs is a journaling filesystem.

 conv Page 41/55

 Instructs version 3.6 reiserfs software to mount a version 3.5

 filesystem, using the 3.6 format for newly created objects. This

 filesystem will no longer be compatible with reiserfs 3.5 tools.

 hash={rupasov|tea|r5|detect}

 Choose which hash function reiserfs will use to find files within

 directories.

 rupasov

 A hash invented by Yury Yu. Rupasov. It is fast and preserves

 locality, mapping lexicographically close file names to close

 hash values. This option should not be used, as it causes a

 high probability of hash collisions.

 tea

 A Davis-Meyer function implemented by Jeremy Fitzhardinge. It

 uses hash permuting bits in the name. It gets high randomness

 and, therefore, low probability of hash collisions at some CPU

 cost. This may be used if EHASHCOLLISION errors are experienced

 with the r5 hash.

 r5

 A modified version of the rupasov hash. It is used by default

 and is the best choice unless the filesystem has huge

 directories and unusual file-name patterns.

 detect

 Instructs mount to detect which hash function is in use by

 examining the filesystem being mounted, and to write this

 information into the reiserfs superblock. This is only useful

 on the first mount of an old format filesystem.

 hashed_relocation

 Tunes the block allocator. This may provide performance

 improvements in some situations.

 no_unhashed_relocation

 Tunes the block allocator. This may provide performance

 improvements in some situations.

 noborder Page 42/55

 Disable the border allocator algorithm invented by Yury Yu.

 Rupasov. This may provide performance improvements in some

 situations.

 nolog

 Disable journaling. This will provide slight performance

 improvements in some situations at the cost of losing reiserfs?s

 fast recovery from crashes. Even with this option turned on,

 reiserfs still performs all journaling operations, save for actual

 writes into its journaling area. Implementation of nolog is a work

 in progress.

 notail

 By default, reiserfs stores small files and 'file tails' directly

 into its tree. This confuses some utilities such as lilo(8). This

 option is used to disable packing of files into the tree.

 replayonly

 Replay the transactions which are in the journal, but do not

 actually mount the filesystem. Mainly used by reiserfsck.

 resize=number

 A remount option which permits online expansion of reiserfs

 partitions. Instructs reiserfs to assume that the device has number

 blocks. This option is designed for use with devices which are

 under logical volume management (LVM). There is a special resizer

 utility which can be obtained from

 ftp://ftp.namesys.com/pub/reiserfsprogs.

 user_xattr

 Enable Extended User Attributes. See the attr(1) manual page.

 acl

 Enable POSIX Access Control Lists. See the acl(5) manual page.

 barrier=none / barrier=flush

 This disables / enables the use of write barriers in the journaling

 code. barrier=none disables, barrier=flush enables (default). This

 also requires an IO stack which can support barriers, and if

 reiserfs gets an error on a barrier write, it will disable barriers Page 43/55

 again with a warning. Write barriers enforce proper on-disk

 ordering of journal commits, making volatile disk write caches safe

 to use, at some performance penalty. If your disks are

 battery-backed in one way or another, disabling barriers may safely

 improve performance.

 Mount options for ubifs

 UBIFS is a flash filesystem which works on top of UBI volumes. Note

 that atime is not supported and is always turned off.

 The device name may be specified as

 ubiX_Y

 UBI device number X, volume number Y

 ubiY

 UBI device number 0, volume number Y

 ubiX:NAME

 UBI device number X, volume with name NAME

 ubi:NAME

 UBI device number 0, volume with name NAME

 Alternative ! separator may be used instead of :.

 The following mount options are available:

 bulk_read

 Enable bulk-read. VFS read-ahead is disabled because it slows down

 the filesystem. Bulk-Read is an internal optimization. Some flashes

 may read faster if the data are read at one go, rather than at

 several read requests. For example, OneNAND can do

 "read-while-load" if it reads more than one NAND page.

 no_bulk_read

 Do not bulk-read. This is the default.

 chk_data_crc

 Check data CRC-32 checksums. This is the default.

 no_chk_data_crc

 Do not check data CRC-32 checksums. With this option, the

 filesystem does not check CRC-32 checksum for data, but it does

 check it for the internal indexing information. This option only Page 44/55

 affects reading, not writing. CRC-32 is always calculated when

 writing the data.

 compr={none|lzo|zlib}

 Select the default compressor which is used when new files are

 written. It is still possible to read compressed files if mounted

 with the none option.

 Mount options for udf

 UDF is the "Universal Disk Format" filesystem defined by OSTA, the

 Optical Storage Technology Association, and is often used for DVD-ROM,

 frequently in the form of a hybrid UDF/ISO-9660 filesystem. It is,

 however, perfectly usable by itself on disk drives, flash drives and

 other block devices. See also iso9660.

 uid=

 Make all files in the filesystem belong to the given user.

 uid=forget can be specified independently of (or usually in

 addition to) uid=<user> and results in UDF not storing uids to the

 media. In fact the recorded uid is the 32-bit overflow uid -1 as

 defined by the UDF standard. The value is given as either <user>

 which is a valid user name or the corresponding decimal user id, or

 the special string "forget".

 gid=

 Make all files in the filesystem belong to the given group.

 gid=forget can be specified independently of (or usually in

 addition to) gid=<group> and results in UDF not storing gids to the

 media. In fact the recorded gid is the 32-bit overflow gid -1 as

 defined by the UDF standard. The value is given as either <group>

 which is a valid group name or the corresponding decimal group id,

 or the special string "forget".

 umask=

 Mask out the given permissions from all inodes read from the

 filesystem. The value is given in octal.

 mode=

 If mode= is set the permissions of all non-directory inodes read Page 45/55

 from the filesystem will be set to the given mode. The value is

 given in octal.

 dmode=

 If dmode= is set the permissions of all directory inodes read from

 the filesystem will be set to the given dmode. The value is given

 in octal.

 bs=

 Set the block size. Default value prior to kernel version 2.6.30

 was 2048. Since 2.6.30 and prior to 4.11 it was logical device

 block size with fallback to 2048. Since 4.11 it is logical block

 size with fallback to any valid block size between logical device

 block size and 4096.

 For other details see the mkudffs(8) 2.0+ manpage, sections

 COMPATIBILITY and BLOCK SIZE.

 unhide

 Show otherwise hidden files.

 undelete

 Show deleted files in lists.

 adinicb

 Embed data in the inode. (default)

 noadinicb

 Don?t embed data in the inode.

 shortad

 Use short UDF address descriptors.

 longad

 Use long UDF address descriptors. (default)

 nostrict

 Unset strict conformance.

 iocharset=

 Set the NLS character set. This requires kernel compiled with

 CONFIG_UDF_NLS option.

 utf8

 Set the UTF-8 character set. Page 46/55

 Mount options for debugging and disaster recovery

 novrs

 Ignore the Volume Recognition Sequence and attempt to mount anyway.

 session=

 Select the session number for multi-session recorded optical media.

 (default= last session)

 anchor=

 Override standard anchor location. (default= 256)

 lastblock=

 Set the last block of the filesystem.

 Unused historical mount options that may be encountered and should be

 removed

 uid=ignore

 Ignored, use uid=<user> instead.

 gid=ignore

 Ignored, use gid=<group> instead.

 volume=

 Unimplemented and ignored.

 partition=

 Unimplemented and ignored.

 fileset=

 Unimplemented and ignored.

 rootdir=

 Unimplemented and ignored.

 Mount options for ufs

 ufstype=value

 UFS is a filesystem widely used in different operating systems. The

 problem are differences among implementations. Features of some

 implementations are undocumented, so its hard to recognize the type

 of ufs automatically. That?s why the user must specify the type of

 ufs by mount option. Possible values are:

 old

 Old format of ufs, this is the default, read only. (Don?t Page 47/55

 forget to give the -r option.)

 44bsd

 For filesystems created by a BSD-like system (NetBSD, FreeBSD,

 OpenBSD).

 ufs2

 Used in FreeBSD 5.x supported as read-write.

 5xbsd

 Synonym for ufs2.

 sun

 For filesystems created by SunOS or Solaris on Sparc.

 sunx86

 For filesystems created by Solaris on x86.

 hp

 For filesystems created by HP-UX, read-only.

 nextstep

 For filesystems created by NeXTStep (on NeXT station)

 (currently read only).

 nextstep-cd

 For NextStep CDROMs (block_size == 2048), read-only.

 openstep

 For filesystems created by OpenStep (currently read only). The

 same filesystem type is also used by Mac OS X.

 onerror=value

 Set behavior on error:

 panic

 If an error is encountered, cause a kernel panic.

 [lock|umount|repair]

 These mount options don?t do anything at present; when an error

 is encountered only a console message is printed.

 Mount options for umsdos

 See mount options for msdos. The dotsOK option is explicitly killed by

 umsdos.

 Mount options for vfat Page 48/55

 First of all, the mount options for fat are recognized. The dotsOK

 option is explicitly killed by vfat. Furthermore, there are

 uni_xlate

 Translate unhandled Unicode characters to special escaped

 sequences. This lets you backup and restore filenames that are

 created with any Unicode characters. Without this option, a '?' is

 used when no translation is possible. The escape character is ':'

 because it is otherwise invalid on the vfat filesystem. The escape

 sequence that gets used, where u is the Unicode character, is: ':',

 (u & 0x3f), ((u>>6) & 0x3f), (u>>12).

 posix

 Allow two files with names that only differ in case. This option is

 obsolete.

 nonumtail

 First try to make a short name without sequence number, before

 trying name~num.ext.

 utf8

 UTF8 is the filesystem safe 8-bit encoding of Unicode that is used

 by the console. It can be enabled for the filesystem with this

 option or disabled with utf8=0, utf8=no or utf8=false. If uni_xlate

 gets set, UTF8 gets disabled.

 shortname=mode

 Defines the behavior for creation and display of filenames which

 fit into 8.3 characters. If a long name for a file exists, it will

 always be the preferred one for display. There are four modes:

 lower

 Force the short name to lower case upon display; store a long

 name when the short name is not all upper case.

 win95

 Force the short name to upper case upon display; store a long

 name when the short name is not all upper case.

 winnt

 Display the short name as is; store a long name when the short Page 49/55

 name is not all lower case or all upper case.

 mixed

 Display the short name as is; store a long name when the short

 name is not all upper case. This mode is the default since

 Linux 2.6.32.

 Mount options for usbfs

 devuid=uid and devgid=gid and devmode=mode

 Set the owner and group and mode of the device files in the usbfs

 filesystem (default: uid=gid=0, mode=0644). The mode is given in

 octal.

 busuid=uid and busgid=gid and busmode=mode

 Set the owner and group and mode of the bus directories in the

 usbfs filesystem (default: uid=gid=0, mode=0555). The mode is given

 in octal.

 listuid=uid and listgid=gid and listmode=mode

 Set the owner and group and mode of the file devices (default:

 uid=gid=0, mode=0444). The mode is given in octal.

DM-VERITY SUPPORT (EXPERIMENTAL)

 The device-mapper verity target provides read-only transparent

 integrity checking of block devices using kernel crypto API. The mount

 command can open the dm-verity device and do the integrity verification

 before on the device filesystem is mounted. Requires libcryptsetup with

 in libmount (optionally via dlopen(3)). If libcryptsetup supports

 extracting the root hash of an already mounted device, existing devices

 will be automatically reused in case of a match. Mount options for

 dm-verity:

 verity.hashdevice=path

 Path to the hash tree device associated with the source volume to

 pass to dm-verity.

 verity.roothash=hex

 Hex-encoded hash of the root of verity.hashdevice. Mutually

 exclusive with verity.roothashfile.

 verity.roothashfile=path Page 50/55

 Path to file containing the hex-encoded hash of the root of

 verity.hashdevice. Mutually exclusive with verity.roothash.

 verity.hashoffset=offset

 If the hash tree device is embedded in the source volume, offset

 (default: 0) is used by dm-verity to get to the tree.

 verity.fecdevice=path

 Path to the Forward Error Correction (FEC) device associated with

 the source volume to pass to dm-verity. Optional. Requires kernel

 built with CONFIG_DM_VERITY_FEC.

 verity.fecoffset=offset

 If the FEC device is embedded in the source volume, offset

 (default: 0) is used by dm-verity to get to the FEC area. Optional.

 verity.fecroots=value

 Parity bytes for FEC (default: 2). Optional.

 verity.roothashsig=path

 Path to pkcs7(1ssl) signature of root hash hex string. Requires

 crypt_activate_by_signed_key() from cryptsetup and kernel built

 with CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG. For device reuse,

 signatures have to be either used by all mounts of a device or by

 none. Optional.

 Supported since util-linux v2.35.

 For example commands:

 mksquashfs /etc /tmp/etc.squashfs

 dd if=/dev/zero of=/tmp/etc.hash bs=1M count=10

 veritysetup format /tmp/etc.squashfs /tmp/etc.hash

 openssl smime -sign -in <hash> -nocerts -inkey private.key \

 -signer private.crt -noattr -binary -outform der -out /tmp/etc.roothash.p7s

 mount -o verity.hashdevice=/tmp/etc.hash,verity.roothash=<hash>,\

 verity.roothashsig=/tmp/etc.roothash.p7s /tmp/etc.squashfs /mnt

 create squashfs image from /etc directory, verity hash device and mount

 verified filesystem image to /mnt. The kernel will verify that the root

 hash is signed by a key from the kernel keyring if roothashsig is used.

LOOP-DEVICE SUPPORT Page 51/55

 One further possible type is a mount via the loop device. For example,

 the command

 mount /tmp/disk.img /mnt -t vfat -o loop=/dev/loop3

 will set up the loop device /dev/loop3 to correspond to the file

 /tmp/disk.img, and then mount this device on /mnt.

 If no explicit loop device is mentioned (but just an option '-o loop'

 is given), then mount will try to find some unused loop device and use

 that, for example

 mount /tmp/disk.img /mnt -o loop

 The mount command automatically creates a loop device from a regular

 file if a filesystem type is not specified or the filesystem is known

 for libblkid, for example:

 mount /tmp/disk.img /mnt

 mount -t ext4 /tmp/disk.img /mnt

 This type of mount knows about three options, namely loop, offset and

 sizelimit, that are really options to losetup(8). (These options can be

 used in addition to those specific to the filesystem type.)

 Since Linux 2.6.25 auto-destruction of loop devices is supported,

 meaning that any loop device allocated by mount will be freed by umount

 independently of /etc/mtab.

 You can also free a loop device by hand, using losetup -d or umount -d.

 Since util-linux v2.29, mount re-uses the loop device rather than

 initializing a new device if the same backing file is already used for

 some loop device with the same offset and sizelimit. This is necessary

 to avoid a filesystem corruption.

EXIT STATUS

 mount has the following exit status values (the bits can be ORed):

 0

 success

 1

 incorrect invocation or permissions

 2

 system error (out of memory, cannot fork, no more loop devices) Page 52/55

 4

 internal mount bug

 8

 user interrupt

 16

 problems writing or locking /etc/mtab

 32

 mount failure

 64

 some mount succeeded

 The command mount -a returns 0 (all succeeded), 32 (all failed), or

 64 (some failed, some succeeded).

EXTERNAL HELPERS

 The syntax of external mount helpers is:

 /sbin/mount.suffix spec dir [-sfnv] [-N namespace] [-o options] [-t

 type.subtype]

 where the suffix is the filesystem type and the -sfnvoN options have

 the same meaning as the normal mount options. The -t option is used for

 filesystems with subtypes support (for example /sbin/mount.fuse -t

 fuse.sshfs).

 The command mount does not pass the mount options unbindable,

 runbindable, private, rprivate, slave, rslave, shared, rshared, auto,

 noauto, comment, x-*, loop, offset and sizelimit to the mount.<suffix>

 helpers. All other options are used in a comma-separated list as an

 argument to the -o option.

ENVIRONMENT

 LIBMOUNT_FSTAB=<path>

 overrides the default location of the fstab file (ignored for suid)

 LIBMOUNT_MTAB=<path>

 overrides the default location of the mtab file (ignored for suid)

 LIBMOUNT_DEBUG=all

 enables libmount debug output

 LIBBLKID_DEBUG=all Page 53/55

 enables libblkid debug output

 LOOPDEV_DEBUG=all

 enables loop device setup debug output

FILES

 See also "The files /etc/fstab, /etc/mtab and /proc/mounts" section

 above.

 /etc/fstab

 filesystem table

 /run/mount

 libmount private runtime directory

 /etc/mtab

 table of mounted filesystems or symlink to /proc/mounts

 /etc/mtab~

 lock file (unused on systems with mtab symlink)

 /etc/mtab.tmp

 temporary file (unused on systems with mtab symlink)

 /etc/filesystems

 a list of filesystem types to try

HISTORY

 A mount command existed in Version 5 AT&T UNIX.

BUGS

 It is possible for a corrupted filesystem to cause a crash.

 Some Linux filesystems don?t support -o sync and -o dirsync (the ext2,

 ext3, ext4, fat and vfat filesystems do support synchronous updates (a

 la BSD) when mounted with the sync option).

 The -o remount may not be able to change mount parameters (all

 ext2fs-specific parameters, except sb, are changeable with a remount,

 for example, but you can?t change gid or umask for the fatfs).

 It is possible that the files /etc/mtab and /proc/mounts don?t match on

 systems with a regular mtab file. The first file is based only on the

 mount command options, but the content of the second file also depends

 on the kernel and others settings (e.g. on a remote NFS server ? in

 certain cases the mount command may report unreliable information about Page 54/55

 an NFS mount point and the /proc/mount file usually contains more

 reliable information.) This is another reason to replace the mtab file

 with a symlink to the /proc/mounts file.

 Checking files on NFS filesystems referenced by file descriptors (i.e.

 the fcntl and ioctl families of functions) may lead to inconsistent

 results due to the lack of a consistency check in the kernel even if

 the noac mount option is used.

 The loop option with the offset or sizelimit options used may fail when

 using older kernels if the mount command can?t confirm that the size of

 the block device has been configured as requested. This situation can

 be worked around by using the losetup(8) command manually before

 calling mount with the configured loop device.

AUTHORS

 Karel Zak <kzak@redhat.com>

SEE ALSO

 mount(2), umount(2), filesystems(5), fstab(5), nfs(5), xfs(5),

 mount_namespaces(7), xattr(7), e2label(8), findmnt(8), losetup(8),

 lsblk(8), mke2fs(8), mountd(8), nfsd(8), swapon(8), tune2fs(8),

 umount(8), xfs_admin(8)

REPORTING BUGS

 For bug reports, use the issue tracker at

 https://github.com/karelzak/util-linux/issues.

AVAILABILITY

 The mount command is part of the util-linux package which can be

 downloaded from Linux Kernel Archive

 <https://www.kernel.org/pub/linux/utils/util-linux/>.

util-linux 2.37.4 2022-02-14 MOUNT(8)

Page 55/55

