
Rocky Enterprise Linux 9.2 Manual Pages on command 'mkfs.msdos.8'

$ man mkfs.msdos.8

MKFS.FAT(8) System Manager's Manual MKFS.FAT(8)

NAME

 mkfs.fat - create an MS-DOS FAT filesystem

SYNOPSIS

 mkfs.fat [OPTIONS] DEVICE [BLOCK-COUNT]

DESCRIPTION

 mkfs.fat is used to create a FAT filesystem on a device or in an image

 file. DEVICE is the special file corresponding to the device (e.g.

 /dev/sdXX) or the image file (which does not need to exist when the op?

 tion -C is given). BLOCK-COUNT is the number of blocks on the device

 and size of one block is always 1024 bytes, independently of the sector

 size or the cluster size. Therefore BLOCK-COUNT specifies size of

 filesystem in KiB unit and not in the number of sectors (like for all

 other mkfs.fat options). If omitted, mkfs.fat automatically chooses a

 filesystem size to fill the available space.

 Two different variants of the FAT filesystem are supported. Standard

 is the FAT12, FAT16 and FAT32 filesystems as defined by Microsoft and

 widely used on hard disks and removable media like USB sticks and SD Page 1/7

 cards. The other is the legacy Atari variant used on Atari ST.

 In Atari mode, if not directed otherwise by the user, mkfs.fat will al?

 ways use 2 sectors per cluster, since GEMDOS doesn't like other values

 very much. It will also obey the maximum number of sectors GEMDOS can

 handle. Larger filesystems are managed by raising the logical sector

 size. An Atari-compatible serial number for the filesystem is gener?

 ated, and a 12 bit FAT is used only for filesystems that have one of

 the usual floppy sizes (720k, 1.2M, 1.44M, 2.88M), a 16 bit FAT other?

 wise. This can be overridden with the -F option. Some PC-specific

 boot sector fields aren't written, and a boot message (option -m) is

 ignored.

OPTIONS

 -a Normally, for any filesystem except very small ones, mkfs.fat will

 align all the data structures to cluster size, to make sure that as

 long as the partition is properly aligned, so will all the data

 structures in the filesystem. This option disables alignment; this

 may provide a handful of additional clusters of storage at the ex?

 pense of a significant performance degradation on RAIDs, flash me?

 dia or large-sector hard disks.

 -A Select using the Atari variation of the FAT filesystem if that

 isn't active already, otherwise select standard FAT filesystem.

 This is selected by default if mkfs.fat is run on 68k Atari Linux.

 -b SECTOR-OF-BACKUP

 Selects the location of the backup boot sector for FAT32. Default

 depends on number of reserved sectors, but usually is sector 6. If

 there is a free space available after the backup boot sector then

 backup of the FAT32 info sector is put after the backup boot sec?

 tor, usually at sector 7. The backup must be within the range of

 reserved sectors. Value 0 completely disables creating of backup

 boot and info FAT32 sectors.

 -c Check the device for bad blocks before creating the filesystem.

 -C Create the file given as DEVICE on the command line, and write the

 to-be-created filesystem to it. This can be used to create the new Page 2/7

 filesystem in a file instead of on a real device, and to avoid us?

 ing dd in advance to create a file of appropriate size. With this

 option, the BLOCK-COUNT must be given, because otherwise the in?

 tended size of the filesystem wouldn't be known. The file created

 is a sparse file, which actually only contains the meta-data areas

 (boot sector, FATs, and root directory). The data portions won't

 be stored on the disk, but the file nevertheless will have the cor?

 rect size. The resulting file can be copied later to a floppy disk

 or other device, or mounted through a loop device.

 -D DRIVE-NUMBER

 Specify the BIOS drive number to be stored in the FAT boot sector.

 For hard disks and removable medias it is usually 0x80?0xFF (0x80

 is first hard disk C:, 0x81 is second hard disk D:, ...), for

 floppy devices or partitions to be used for floppy emulation it is

 0x00?0x7F (0x00 is first floppy A:, 0x01 is second floppy B:).

 -f NUMBER-OF-FATS

 Specify the number of file allocation tables in the filesystem.

 The default is 2.

 -F FAT-SIZE

 Specifies the type of file allocation tables used (12, 16 or 32

 bit). If nothing is specified, mkfs.fat will automatically select

 between 12, 16 and 32 bit, whatever fits better for the filesystem

 size.

 -g HEADS/SECTORS-PER-TRACK

 Specify HEADS and SECTORS-PER-TRACK numbers which represents disk

 geometry of DEVICE. Both numbers are stored into the FAT boot sec?

 tor. Number SECTORS-PER-TRACK is used also for aligning the total

 count of FAT sectors. By default disk geometry is read from DEVICE

 itself. If it is not available then LBA-Assist Translation and

 translation table from the SD Card Part 2 File System Specification

 based on total number of disk sectors is used.

 -h NUMBER-OF-HIDDEN-SECTORS

 Specify the number of so-called hidden sectors, as stored in the Page 3/7

 FAT boot sector: this number represents the beginning sector of the

 partition containing the file system. Normally this is an offset

 (in sectors) relative to the start of the disk, although for MBR

 logical volumes contained in an extended partition of type 0x05 (a

 non-LBA extended partition), a quirk in the MS-DOS implementation

 of FAT requires it to be relative to the partition's immediate con?

 taining Extended Boot Record. Boot code and other software han?

 dling FAT volumes may also rely on this field being set up cor?

 rectly; most modern FAT implementations will ignore it. By de?

 fault, if the DEVICE is a partition block device, mkfs.fat uses the

 partition offset relative to disk start. Otherwise, mkfs.fat as?

 sumes zero. Use this option to override this behaviour.

 -i VOLUME-ID

 Sets the volume ID of the newly created filesystem; VOLUME-ID is a

 32-bit hexadecimal number (for example, 2e24ec82). The default is

 a number which depends on the filesystem creation time.

 -I Ignore and disable safety checks. By default mkfs.fat refuses to

 create a filesystem on a device with partitions or virtual mapping.

 mkfs.fat will complain and tell you that it refuses to work. This

 is different when using MO disks. One doesn't always need parti?

 tions on MO disks. The filesystem can go directly to the whole

 disk. Under other OSes this is known as the superfloppy format.

 This switch will force mkfs.fat to work properly.

 -l FILENAME

 Read the bad blocks list from FILENAME.

 -m MESSAGE-FILE

 Sets the message the user receives on attempts to boot this

 filesystem without having properly installed an operating system.

 The message file must not exceed 418 bytes once line feeds have

 been converted to carriage return-line feed combinations, and tabs

 have been expanded. If the filename is a hyphen (-), the text is

 taken from standard input.

 -M FAT-MEDIA-TYPE Page 4/7

 Specify the media type to be stored in the FAT boot sector. This

 value is usually 0xF8 for hard disks and is 0xF0 or a value from

 0xF9 to 0xFF for floppies or partitions to be used for floppy emu?

 lation.

 --mbr[=y|yes|n|no|a|auto]

 Fill (fake) MBR table with disk signature one partition which

 starts at sector 0 (includes MBR itself) and spans whole disk de?

 vice. It is needed only for non-removable disks used on Microsoft

 Windows systems and only when formatting whole unpartitioned disk.

 Location of the disk signature and partition table overlaps with

 the end of the first FAT sector (boot code location), therefore

 there is no additional space usage. Default is auto mode in which

 mkfs.fat put MBR table only for non-removable disks when formatting

 whole unpartitioned disk.

 -n VOLUME-NAME

 Sets the volume name (label) of the filesystem. The volume name

 can be up to 11 characters long. Supplying an empty string, a

 string consisting only of white space or the string "NO NAME" as

 VOLUME-NAME has the same effect as not giving the -n option. The

 default is no label.

 --codepage=PAGE

 Use DOS codepage PAGE to encode label. By default codepage 850 is

 used.

 -r ROOT-DIR-ENTRIES

 Select the minimal number of entries available in the root direc?

 tory. The default is 112 or 224 for floppies and 512 for hard

 disks. Note that this is minimal number and it may be increased by

 mkfs.fat due to alignment of structures. See also mkfs.fat option

 -a.

 -R NUMBER-OF-RESERVED-SECTORS

 Select the minimal number of reserved sectors. With FAT32 format

 at least 2 reserved sectors are needed, the default is 32. Other?

 wise the default is 1 (only the boot sector). Note that this is Page 5/7

 minimal number and it may be increased by mkfs.fat due to alignment

 of structures. See also mkfs.fat option -a.

 -s SECTORS-PER-CLUSTER

 Specify the number of disk sectors per cluster. Must be a power of

 2, i.e. 1, 2, 4, 8, ... 128.

 -S LOGICAL-SECTOR-SIZE

 Specify the number of bytes per logical sector. Must be a power of

 2 and greater than or equal to 512, i.e. 512, 1024, 2048, 4096,

 8192, 16384, or 32768. Values larger than 4096 are not conforming

 to the FAT file system specification and may not work everywhere.

 -v Verbose execution.

 --offset SECTOR

 Write the filesystem at a specific sector into the device file.

 This is useful for creating a filesystem in a partitioned disk im?

 age without having to set up a loop device.

 --variant TYPE

 Create a filesystem of variant TYPE. Acceptable values are stan?

 dard and atari (in any combination of upper/lower case). See above

 under DESCRIPTION for the differences.

 --help

 Display option summary and exit.

 --invariant

 Use constants for normally randomly generated or time based data

 such as volume ID and creation time. Multiple runs of mkfs.fat on

 the same device create identical results with this option. Its

 main purpose is testing mkfs.fat.

BUGS

 mkfs.fat can not create boot-able filesystems. This isn't as easy as

 you might think at first glance for various reasons and has been dis?

 cussed a lot already. mkfs.fat simply will not support it ;)

SEE ALSO

 fatlabel(8), fsck.fat(8)

HOMEPAGE Page 6/7

 The home for the dosfstools project is its GitHub project page

 ?https://github.com/dosfstools/dosfstools?.

AUTHORS

 dosfstools were written by Werner Almesberger ?werner.almesberger@

 lrc.di.epfl.ch?, Roman Hodek ?Roman.Hodek@informatik.uni-erlangen.de?,

 and others. Current maintainers are Andreas Bombe ?aeb@debian.org? and

 Pali Roh?r ?pali.rohar@gmail.com?.

dosfstools 4.2 2021-01-31 MKFS.FAT(8)

Page 7/7

