
Rocky Enterprise Linux 9.2 Manual Pages on command 'mkfifoat.3'

$ man mkfifoat.3

MKFIFO(3) Linux Programmer's Manual MKFIFO(3)

NAME

 mkfifo, mkfifoat - make a FIFO special file (a named pipe)

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 int mkfifo(const char *pathname, mode_t mode);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <sys/stat.h>

 int mkfifoat(int dirfd, const char *pathname, mode_t mode);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 mkfifoat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 mkfifo() makes a FIFO special file with name pathname. mode specifies Page 1/4

 the FIFO's permissions. It is modified by the process's umask in the

 usual way: the permissions of the created file are (mode & ~umask).

 A FIFO special file is similar to a pipe, except that it is created in

 a different way. Instead of being an anonymous communications channel,

 a FIFO special file is entered into the filesystem by calling mkfifo().

 Once you have created a FIFO special file in this way, any process can

 open it for reading or writing, in the same way as an ordinary file.

 However, it has to be open at both ends simultaneously before you can

 proceed to do any input or output operations on it. Opening a FIFO for

 reading normally blocks until some other process opens the same FIFO

 for writing, and vice versa. See fifo(7) for nonblocking handling of

 FIFO special files.

 mkfifoat()

 The mkfifoat() function operates in exactly the same way as mkfifo(),

 except for the differences described here.

 If the pathname given in pathname is relative, then it is interpreted

 relative to the directory referred to by the file descriptor dirfd

 (rather than relative to the current working directory of the calling

 process, as is done by mkfifo() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then

 pathname is interpreted relative to the current working directory of

 the calling process (like mkfifo()).

 If pathname is absolute, then dirfd is ignored.

RETURN VALUE

 On success mkfifo() and mkfifoat() return 0. In the case of an error,

 -1 is returned (in which case, errno is set appropriately).

ERRORS

 EACCES One of the directories in pathname did not allow search (exe?

 cute) permission.

 EDQUOT The user's quota of disk blocks or inodes on the filesystem has

 been exhausted.

 EEXIST pathname already exists. This includes the case where pathname

 is a symbolic link, dangling or not. Page 2/4

 ENAMETOOLONG

 Either the total length of pathname is greater than PATH_MAX, or

 an individual filename component has a length greater than

 NAME_MAX. In the GNU system, there is no imposed limit on over?

 all filename length, but some filesystems may place limits on

 the length of a component.

 ENOENT A directory component in pathname does not exist or is a dan?

 gling symbolic link.

 ENOSPC The directory or filesystem has no room for the new file.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a

 directory.

 EROFS pathname refers to a read-only filesystem.

 The following additional errors can occur for mkfifoat():

 EBADF dirfd is not a valid file descriptor.

 ENOTDIR

 pathname is a relative path and dirfd is a file descriptor re?

 ferring to a file other than a directory.

VERSIONS

 mkfifoat() was added to glibc in version 2.4. It is implemented using

 mknodat(2), available on Linux since kernel 2.6.16.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?mkfifo(), mkfifoat() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 mkfifo(): POSIX.1-2001, POSIX.1-2008.

 mkfifoat(): POSIX.1-2008.

SEE ALSO Page 3/4

 mkfifo(1), close(2), open(2), read(2), stat(2), umask(2), write(2),

 fifo(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-08-13 MKFIFO(3)

Page 4/4

