
Rocky Enterprise Linux 9.2 Manual Pages on command 'memusage.1'

$ man memusage.1

MEMUSAGE(1) Linux user manual MEMUSAGE(1)

NAME

 memusage - profile memory usage of a program

SYNOPSIS

 memusage [option]... program [programoption]...

DESCRIPTION

 memusage is a bash script which profiles memory usage of the program,

 program. It preloads the libmemusage.so library into the caller's en?

 vironment (via the LD_PRELOAD environment variable; see ld.so(8)). The

 libmemusage.so library traces memory allocation by intercepting calls

 to malloc(3), calloc(3), free(3), and realloc(3); optionally, calls to

 mmap(2), mremap(2), and munmap(2) can also be intercepted.

 memusage can output the collected data in textual form, or it can use

 memusagestat(1) (see the -p option, below) to create a PNG file con?

 taining graphical representation of the collected data.

 Memory usage summary

 The "Memory usage summary" line output by memusage contains three

 fields: Page 1/6

 heap total

 Sum of size arguments of all malloc(3) calls, products of

 arguments (nmemb*size) of all calloc(3) calls, and sum of

 length arguments of all mmap(2) calls. In the case of real?

 loc(3) and mremap(2), if the new size of an allocation is

 larger than the previous size, the sum of all such differ?

 ences (new size minus old size) is added.

 heap peak

 Maximum of all size arguments of malloc(3), all products of

 nmemb*size of calloc(3), all size arguments of realloc(3),

 length arguments of mmap(2), and new_size arguments of

 mremap(2).

 stack peak

 Before the first call to any monitored function, the stack

 pointer address (base stack pointer) is saved. After each

 function call, the actual stack pointer address is read and

 the difference from the base stack pointer computed. The

 maximum of these differences is then the stack peak.

 Immediately following this summary line, a table shows the number

 calls, total memory allocated or deallocated, and number of failed

 calls for each intercepted function. For realloc(3) and mremap(2), the

 additional field "nomove" shows reallocations that changed the address

 of a block, and the additional "dec" field shows reallocations that de?

 creased the size of the block. For realloc(3), the additional field

 "free" shows reallocations that caused a block to be freed (i.e., the

 reallocated size was 0).

 The "realloc/total memory" of the table output by memusage does not re?

 flect cases where realloc(3) is used to reallocate a block of memory to

 have a smaller size than previously. This can cause sum of all "total

 memory" cells (excluding "free") to be larger than the "free/total mem?

 ory" cell.

 Histogram for block sizes

 The "Histogram for block sizes" provides a breakdown of memory alloca? Page 2/6

 tions into various bucket sizes.

OPTIONS

 -n name, --progname=name

 Name of the program file to profile.

 -p file, --png=file

 Generate PNG graphic and store it in file.

 -d file, --data=file

 Generate binary data file and store it in file.

 -u, --unbuffered

 Do not buffer output.

 -b size, --buffer=size

 Collect size entries before writing them out.

 --no-timer

 Disable timer-based (SIGPROF) sampling of stack pointer value.

 -m, --mmap

 Also trace mmap(2), mremap(2), and munmap(2).

 -?, --help

 Print help and exit.

 --usage

 Print a short usage message and exit.

 -V, --version

 Print version information and exit.

 The following options apply only when generating graphical output:

 -t, --time-based

 Use time (rather than number of function calls) as the scale for

 the X axis.

 -T, --total

 Also draw a graph of total memory use.

 --title=name

 Use name as the title of the graph.

 -x size, --x-size=size

 Make the graph size pixels wide.

 -y size, --y-size=size Page 3/6

 Make the graph size pixels high.

EXIT STATUS

 Exit status is equal to the exit status of profiled program.

BUGS

 To report bugs, see ?http://www.gnu.org/software/libc/bugs.html?

EXAMPLES

 Below is a simple program that reallocates a block of memory in cycles

 that rise to a peak before then cyclically reallocating the memory in

 smaller blocks that return to zero. After compiling the program and

 running the following commands, a graph of the memory usage of the pro?

 gram can be found in the file memusage.png:

 $ memusage --data=memusage.dat ./a.out

 ...

 Memory usage summary: heap total: 45200, heap peak: 6440, stack peak: 224

 total calls total memory failed calls

 malloc| 1 400 0

 realloc| 40 44800 0 (nomove:40, dec:19, free:0)

 calloc| 0 0 0

 free| 1 440

 Histogram for block sizes:

 192-207 1 2% ================

 ...

 2192-2207 1 2% ================

 2240-2255 2 4% =================================

 2832-2847 2 4% =================================

 3440-3455 2 4% =================================

 4032-4047 2 4% =================================

 4640-4655 2 4% =================================

 5232-5247 2 4% =================================

 5840-5855 2 4% =================================

 6432-6447 1 2% ================

 $ memusagestat memusage.dat memusage.png

 Program source Page 4/6

 #include <stdio.h>

 #include <stdlib.h>

 #define CYCLES 20

 int

 main(int argc, char *argv[])

 {

 int i, j;

 size_t size;

 int *p;

 size = sizeof(*p) * 100;

 printf("malloc: %zu\n", size);

 p = malloc(size);

 for (i = 0; i < CYCLES; i++) {

 if (i < CYCLES / 2)

 j = i;

 else

 j--;

 size = sizeof(*p) * (j * 50 + 110);

 printf("realloc: %zu\n", size);

 p = realloc(p, size);

 size = sizeof(*p) * ((j + 1) * 150 + 110);

 printf("realloc: %zu\n", size);

 p = realloc(p, size);

 }

 free(p);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 memusagestat(1), mtrace(1), ld.so(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 5/6

 https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 MEMUSAGE(1)

Page 6/6

