
Rocky Enterprise Linux 9.2 Manual Pages on command 'mdadm.8'

$ man mdadm.8

MDADM(8) System Manager's Manual MDADM(8)

NAME

 mdadm - manage MD devices aka Linux Software RAID

SYNOPSIS

 mdadm [mode] <raiddevice> [options] <component-devices>

DESCRIPTION

 RAID devices are virtual devices created from two or more real block

 devices. This allows multiple devices (typically disk drives or parti?

 tions thereof) to be combined into a single device to hold (for exam?

 ple) a single filesystem. Some RAID levels include redundancy and so

 can survive some degree of device failure.

 Linux Software RAID devices are implemented through the md (Multiple

 Devices) device driver.

 Currently, Linux supports LINEAR md devices, RAID0 (striping), RAID1

 (mirroring), RAID4, RAID5, RAID6, RAID10, MULTIPATH, FAULTY, and CON?

 TAINER.

 MULTIPATH is not a Software RAID mechanism, but does involve multiple

 devices: each device is a path to one common physical storage device. Page 1/57

 New installations should not use md/multipath as it is not well sup?

 ported and has no ongoing development. Use the Device Mapper based

 multipath-tools instead.

 FAULTY is also not true RAID, and it only involves one device. It pro?

 vides a layer over a true device that can be used to inject faults.

 CONTAINER is different again. A CONTAINER is a collection of devices

 that are managed as a set. This is similar to the set of devices con?

 nected to a hardware RAID controller. The set of devices may contain a

 number of different RAID arrays each utilising some (or all) of the

 blocks from a number of the devices in the set. For example, two de?

 vices in a 5-device set might form a RAID1 using the whole devices.

 The remaining three might have a RAID5 over the first half of each de?

 vice, and a RAID0 over the second half.

 With a CONTAINER, there is one set of metadata that describes all of

 the arrays in the container. So when mdadm creates a CONTAINER device,

 the device just represents the metadata. Other normal arrays (RAID1

 etc) can be created inside the container.

MODES

 mdadm has several major modes of operation:

 Assemble

 Assemble the components of a previously created array into an

 active array. Components can be explicitly given or can be

 searched for. mdadm checks that the components do form a bona

 fide array, and can, on request, fiddle superblock information

 so as to assemble a faulty array.

 Build Build an array that doesn't have per-device metadata (su?

 perblocks). For these sorts of arrays, mdadm cannot differenti?

 ate between initial creation and subsequent assembly of an ar?

 ray. It also cannot perform any checks that appropriate compo?

 nents have been requested. Because of this, the Build mode

 should only be used together with a complete understanding of

 what you are doing.

 Create Create a new array with per-device metadata (superblocks). Ap? Page 2/57

 propriate metadata is written to each device, and then the array

 comprising those devices is activated. A 'resync' process is

 started to make sure that the array is consistent (e.g. both

 sides of a mirror contain the same data) but the content of the

 device is left otherwise untouched. The array can be used as

 soon as it has been created. There is no need to wait for the

 initial resync to finish.

 Follow or Monitor

 Monitor one or more md devices and act on any state changes.

 This is only meaningful for RAID1, 4, 5, 6, 10 or multipath ar?

 rays, as only these have interesting state. RAID0 or Linear

 never have missing, spare, or failed drives, so there is nothing

 to monitor.

 Grow Grow (or shrink) an array, or otherwise reshape it in some way.

 Currently supported growth options including changing the active

 size of component devices and changing the number of active de?

 vices in Linear and RAID levels 0/1/4/5/6, changing the RAID

 level between 0, 1, 5, and 6, and between 0 and 10, changing the

 chunk size and layout for RAID 0,4,5,6,10 as well as adding or

 removing a write-intent bitmap and changing the array's consis?

 tency policy.

 Incremental Assembly

 Add a single device to an appropriate array. If the addition of

 the device makes the array runnable, the array will be started.

 This provides a convenient interface to a hot-plug system. As

 each device is detected, mdadm has a chance to include it in

 some array as appropriate. Optionally, when the --fail flag is

 passed in we will remove the device from any active array in?

 stead of adding it.

 If a CONTAINER is passed to mdadm in this mode, then any arrays

 within that container will be assembled and started.

 Manage This is for doing things to specific components of an array such

 as adding new spares and removing faulty devices. Page 3/57

 Misc This is an 'everything else' mode that supports operations on

 active arrays, operations on component devices such as erasing

 old superblocks, and information-gathering operations.

 Auto-detect

 This mode does not act on a specific device or array, but rather

 it requests the Linux Kernel to activate any auto-detected ar?

 rays.

OPTIONS

Options for selecting a mode are:

 -A, --assemble

 Assemble a pre-existing array.

 -B, --build

 Build a legacy array without superblocks.

 -C, --create

 Create a new array.

 -F, --follow, --monitor

 Select Monitor mode.

 -G, --grow

 Change the size or shape of an active array.

 -I, --incremental

 Add/remove a single device to/from an appropriate array, and

 possibly start the array.

 --auto-detect

 Request that the kernel starts any auto-detected arrays. This

 can only work if md is compiled into the kernel ? not if it is a

 module. Arrays can be auto-detected by the kernel if all the

 components are in primary MS-DOS partitions with partition type

 FD, and all use v0.90 metadata. In-kernel autodetect is not

 recommended for new installations. Using mdadm to detect and

 assemble arrays ? possibly in an initrd ? is substantially more

 flexible and should be preferred.

 If a device is given before any options, or if the first option is one

 of --add, --re-add, --add-spare, --fail, --remove, or --replace, then Page 4/57

 the MANAGE mode is assumed. Anything other than these will cause the

 Misc mode to be assumed.

Options that are not mode-specific are:

 -h, --help

 Display a general help message or, after one of the above op?

 tions, a mode-specific help message.

 --help-options

 Display more detailed help about command-line parsing and some

 commonly used options.

 -V, --version

 Print version information for mdadm.

 -v, --verbose

 Be more verbose about what is happening. This can be used twice

 to be extra-verbose. The extra verbosity currently only affects

 --detail --scan and --examine --scan.

 -q, --quiet

 Avoid printing purely informative messages. With this, mdadm

 will be silent unless there is something really important to re?

 port.

 -f, --force

 Be more forceful about certain operations. See the various

 modes for the exact meaning of this option in different con?

 texts.

 -c, --config=

 Specify the config file or directory. If not specified, the de?

 fault config file and default conf.d directory will be used.

 See mdadm.conf(5) for more details.

 If the config file given is partitions then nothing will be

 read, but mdadm will act as though the config file contained ex?

 actly

 DEVICE partitions containers

 and will read /proc/partitions to find a list of devices to

 scan, and /proc/mdstat to find a list of containers to examine. Page 5/57

 If the word none is given for the config file, then mdadm will

 act as though the config file were empty.

 If the name given is of a directory, then mdadm will collect all

 the files contained in the directory with a name ending in

 .conf, sort them lexically, and process all of those files as

 config files.

 -s, --scan

 Scan config file or /proc/mdstat for missing information. In

 general, this option gives mdadm permission to get any missing

 information (like component devices, array devices, array iden?

 tities, and alert destination) from the configuration file (see

 previous option); one exception is MISC mode when using --detail

 or --stop, in which case --scan says to get a list of array de?

 vices from /proc/mdstat.

 -e, --metadata=

 Declare the style of RAID metadata (superblock) to be used. The

 default is 1.2 for --create, and to guess for other operations.

 The default can be overridden by setting the metadata value for

 the CREATE keyword in mdadm.conf.

 Options are:

 0, 0.90

 Use the original 0.90 format superblock. This format

 limits arrays to 28 component devices and limits compo?

 nent devices of levels 1 and greater to 2 terabytes. It

 is also possible for there to be confusion about whether

 the superblock applies to a whole device or just the last

 partition, if that partition starts on a 64K boundary.

 1, 1.0, 1.1, 1.2 default

 Use the new version-1 format superblock. This has fewer

 restrictions. It can easily be moved between hosts with

 different endian-ness, and a recovery operation can be

 checkpointed and restarted. The different sub-versions

 store the superblock at different locations on the de? Page 6/57

 vice, either at the end (for 1.0), at the start (for 1.1)

 or 4K from the start (for 1.2). "1" is equivalent to

 "1.2" (the commonly preferred 1.x format). "default" is

 equivalent to "1.2".

 ddf Use the "Industry Standard" DDF (Disk Data Format) format

 defined by SNIA. When creating a DDF array a CONTAINER

 will be created, and normal arrays can be created in that

 container.

 imsm Use the Intel(R) Matrix Storage Manager metadata format.

 This creates a CONTAINER which is managed in a similar

 manner to DDF, and is supported by an option-rom on some

 platforms:

 https://www.intel.com/content/www/us/en/support/prod?

 ucts/122484/memory-and-storage/ssd-software/intel-vir?

 tual-raid-on-cpu-intel-vroc.html

 --homehost=

 This will override any HOMEHOST setting in the config file and

 provides the identity of the host which should be considered the

 home for any arrays.

 When creating an array, the homehost will be recorded in the

 metadata. For version-1 superblocks, it will be prefixed to the

 array name. For version-0.90 superblocks, part of the SHA1 hash

 of the hostname will be stored in the latter half of the UUID.

 When reporting information about an array, any array which is

 tagged for the given homehost will be reported as such.

 When using Auto-Assemble, only arrays tagged for the given home?

 host will be allowed to use 'local' names (i.e. not ending in

 '_' followed by a digit string). See below under Auto-Assembly.

 The special name "any" can be used as a wild card. If an array

 is created with --homehost=any then the name "any" will be

 stored in the array and it can be assembled in the same way on

 any host. If an array is assembled with this option, then the

 homehost recorded on the array will be ignored. Page 7/57

 --prefer=

 When mdadm needs to print the name for a device it normally

 finds the name in /dev which refers to the device and is the

 shortest. When a path component is given with --prefer mdadm

 will prefer a longer name if it contains that component. For

 example --prefer=by-uuid will prefer a name in a subdirectory of

 /dev called by-uuid.

 This functionality is currently only provided by --detail and

 --monitor.

 --home-cluster=

 specifies the cluster name for the md device. The md device can

 be assembled only on the cluster which matches the name speci?

 fied. If this option is not provided, mdadm tries to detect the

 cluster name automatically.

For create, build, or grow:

 -n, --raid-devices=

 Specify the number of active devices in the array. This, plus

 the number of spare devices (see below) must equal the number of

 component-devices (including "missing" devices) that are listed

 on the command line for --create. Setting a value of 1 is prob?

 ably a mistake and so requires that --force be specified first.

 A value of 1 will then be allowed for linear, multipath, RAID0

 and RAID1. It is never allowed for RAID4, RAID5 or RAID6.

 This number can only be changed using --grow for RAID1, RAID4,

 RAID5 and RAID6 arrays, and only on kernels which provide the

 necessary support.

 -x, --spare-devices=

 Specify the number of spare (eXtra) devices in the initial ar?

 ray. Spares can also be added and removed later. The number of

 component devices listed on the command line must equal the num?

 ber of RAID devices plus the number of spare devices.

 -z, --size=

 Amount (in Kilobytes) of space to use from each drive in RAID Page 8/57

 levels 1/4/5/6/10 and for RAID 0 on external metadata. This

 must be a multiple of the chunk size, and must leave about 128Kb

 of space at the end of the drive for the RAID superblock. If

 this is not specified (as it normally is not) the smallest drive

 (or partition) sets the size, though if there is a variance

 among the drives of greater than 1%, a warning is issued.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilo?

 bytes, Megabytes, Gigabytes or Terabytes respectively.

 Sometimes a replacement drive can be a little smaller than the

 original drives though this should be minimised by IDEMA stan?

 dards. Such a replacement drive will be rejected by md. To

 guard against this it can be useful to set the initial size

 slightly smaller than the smaller device with the aim that it

 will still be larger than any replacement.

 This option can be used with --create for determining the ini?

 tial size of an array. For external metadata, it can be used on

 a volume, but not on a container itself. Setting the initial

 size of RAID 0 array is only valid for external metadata.

 This value can be set with --grow for RAID level 1/4/5/6/10

 though DDF arrays may not be able to support this. RAID 0 array

 size cannot be changed. If the array was created with a size

 smaller than the currently active drives, the extra space can be

 accessed using --grow. The size can be given as max which means

 to choose the largest size that fits on all current drives.

 Before reducing the size of the array (with --grow --size=) you

 should make sure that space isn't needed. If the device holds a

 filesystem, you would need to resize the filesystem to use less

 space.

 After reducing the array size you should check that the data

 stored in the device is still available. If the device holds a

 filesystem, then an 'fsck' of the filesystem is a minimum re?

 quirement. If there are problems the array can be made bigger

 again with no loss with another --grow --size= command. Page 9/57

 -Z, --array-size=

 This is only meaningful with --grow and its effect is not per?

 sistent: when the array is stopped and restarted the default ar?

 ray size will be restored.

 Setting the array-size causes the array to appear smaller to

 programs that access the data. This is particularly needed be?

 fore reshaping an array so that it will be smaller. As the re?

 shape is not reversible, but setting the size with --array-size

 is, it is required that the array size is reduced as appropriate

 before the number of devices in the array is reduced.

 Before reducing the size of the array you should make sure that

 space isn't needed. If the device holds a filesystem, you would

 need to resize the filesystem to use less space.

 After reducing the array size you should check that the data

 stored in the device is still available. If the device holds a

 filesystem, then an 'fsck' of the filesystem is a minimum re?

 quirement. If there are problems the array can be made bigger

 again with no loss with another --grow --array-size= command.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilo?

 bytes, Megabytes, Gigabytes or Terabytes respectively. A value

 of max restores the apparent size of the array to be whatever

 the real amount of available space is.

 Clustered arrays do not support this parameter yet.

 -c, --chunk=

 Specify chunk size in kilobytes. The default when creating an

 array is 512KB. To ensure compatibility with earlier versions,

 the default when building an array with no persistent metadata

 is 64KB. This is only meaningful for RAID0, RAID4, RAID5,

 RAID6, and RAID10.

 RAID4, RAID5, RAID6, and RAID10 require the chunk size to be a

 power of 2, with minimal chunk size being 4KB.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilo?

 bytes, Megabytes, Gigabytes or Terabytes respectively. Page 10/57

 --rounding=

 Specify the rounding factor for a Linear array. The size of

 each component will be rounded down to a multiple of this size.

 This is a synonym for --chunk but highlights the different mean?

 ing for Linear as compared to other RAID levels. The default is

 64K if a kernel earlier than 2.6.16 is in use, and is 0K (i.e.

 no rounding) in later kernels.

 -l, --level=

 Set RAID level. When used with --create, options are: linear,

 raid0, 0, stripe, raid1, 1, mirror, raid4, 4, raid5, 5, raid6,

 6, raid10, 10, multipath, mp, faulty, container. Obviously some

 of these are synonymous.

 When a CONTAINER metadata type is requested, only the container

 level is permitted, and it does not need to be explicitly given.

 When used with --build, only linear, stripe, raid0, 0, raid1,

 multipath, mp, and faulty are valid.

 Can be used with --grow to change the RAID level in some cases.

 See LEVEL CHANGES below.

 -p, --layout=

 This option configures the fine details of data layout for

 RAID5, RAID6, and RAID10 arrays, and controls the failure modes

 for faulty. It can also be used for working around a kernel bug

 with RAID0, but generally doesn't need to be used explicitly.

 The layout of the RAID5 parity block can be one of left-asymmet?

 ric, left-symmetric, right-asymmetric, right-symmetric, la, ra,

 ls, rs. The default is left-symmetric.

 It is also possible to cause RAID5 to use a RAID4-like layout by

 choosing parity-first, or parity-last.

 Finally for RAID5 there are DDF-compatible layouts,

 ddf-zero-restart, ddf-N-restart, and ddf-N-continue.

 These same layouts are available for RAID6. There are also 4

 layouts that will provide an intermediate stage for converting

 between RAID5 and RAID6. These provide a layout which is iden? Page 11/57

 tical to the corresponding RAID5 layout on the first N-1 de?

 vices, and has the 'Q' syndrome (the second 'parity' block used

 by RAID6) on the last device. These layouts are: left-symmet?

 ric-6, right-symmetric-6, left-asymmetric-6, right-asymmetric-6,

 and parity-first-6.

 When setting the failure mode for level faulty, the options are:

 write-transient, wt, read-transient, rt, write-persistent, wp,

 read-persistent, rp, write-all, read-fixable, rf, clear, flush,

 none.

 Each failure mode can be followed by a number, which is used as

 a period between fault generation. Without a number, the fault

 is generated once on the first relevant request. With a number,

 the fault will be generated after that many requests, and will

 continue to be generated every time the period elapses.

 Multiple failure modes can be current simultaneously by using

 the --grow option to set subsequent failure modes.

 "clear" or "none" will remove any pending or periodic failure

 modes, and "flush" will clear any persistent faults.

 The layout options for RAID10 are one of 'n', 'o' or 'f' fol?

 lowed by a small number signifying the number of copies of each

 datablock. The default is 'n2'. The supported options are:

 'n' signals 'near' copies. Multiple copies of one data block

 are at similar offsets in different devices.

 'o' signals 'offset' copies. Rather than the chunks being du?

 plicated within a stripe, whole stripes are duplicated but are

 rotated by one device so duplicate blocks are on different de?

 vices. Thus subsequent copies of a block are in the next drive,

 and are one chunk further down.

 'f' signals 'far' copies (multiple copies have very different

 offsets). See md(4) for more detail about 'near', 'offset', and

 'far'.

 As for the number of copies of each data block, 2 is normal, 3

 can be useful. This number can be at most equal to the number Page 12/57

 of devices in the array. It does not need to divide evenly into

 that number (e.g. it is perfectly legal to have an 'n2' layout

 for an array with an odd number of devices).

 A bug introduced in Linux 3.14 means that RAID0 arrays with de?

 vices of differing sizes started using a different layout. This

 could lead to data corruption. Since Linux 5.4 (and various

 stable releases that received backports), the kernel will not

 accept such an array unless a layout is explicitly set. It can

 be set to 'original' or 'alternate'. When creating a new array,

 mdadm will select 'original' by default, so the layout does not

 normally need to be set. An array created for either 'original'

 or 'alternate' will not be recognized by an (unpatched) kernel

 prior to 5.4. To create a RAID0 array with devices of differing

 sizes that can be used on an older kernel, you can set the lay?

 out to 'dangerous'. This will use whichever layout the running

 kernel supports, so the data on the array may become corrupt

 when changing kernel from pre-3.14 to a later kernel.

 When an array is converted between RAID5 and RAID6 an intermedi?

 ate RAID6 layout is used in which the second parity block (Q) is

 always on the last device. To convert a RAID5 to RAID6 and

 leave it in this new layout (which does not require re-striping)

 use --layout=preserve. This will try to avoid any restriping.

 The converse of this is --layout=normalise which will change a

 non-standard RAID6 layout into a more standard arrangement.

 --parity=

 same as --layout (thus explaining the p of -p).

 -b, --bitmap=

 Specify a file to store a write-intent bitmap in. The file

 should not exist unless --force is also given. The same file

 should be provided when assembling the array. If the word in?

 ternal is given, then the bitmap is stored with the metadata on

 the array, and so is replicated on all devices. If the word

 none is given with --grow mode, then any bitmap that is present Page 13/57

 is removed. If the word clustered is given, the array is created

 for a clustered environment. One bitmap is created for each node

 as defined by the --nodes parameter and are stored internally.

 To help catch typing errors, the filename must contain at least

 one slash ('/') if it is a real file (not 'internal' or 'none').

 Note: external bitmaps are only known to work on ext2 and ext3.

 Storing bitmap files on other filesystems may result in serious

 problems.

 When creating an array on devices which are 100G or larger,

 mdadm automatically adds an internal bitmap as it will usually

 be beneficial. This can be suppressed with --bitmap=none or by

 selecting a different consistency policy with --consistency-pol?

 icy.

 --bitmap-chunk=

 Set the chunk size of the bitmap. Each bit corresponds to that

 many Kilobytes of storage. When using a file-based bitmap, the

 default is to use the smallest size that is at least 4 and re?

 quires no more than 2^21 chunks. When using an internal bitmap,

 the chunk size defaults to 64Meg, or larger if necessary to fit

 the bitmap into the available space.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilo?

 bytes, Megabytes, Gigabytes or Terabytes respectively.

 -W, --write-mostly

 subsequent devices listed in a --build, --create, or --add com?

 mand will be flagged as 'write-mostly'. This is valid for RAID1

 only and means that the 'md' driver will avoid reading from

 these devices if at all possible. This can be useful if mirror?

 ing over a slow link.

 --write-behind=

 Specify that write-behind mode should be enabled (valid for

 RAID1 only). If an argument is specified, it will set the maxi?

 mum number of outstanding writes allowed. The default value is

 256. A write-intent bitmap is required in order to use write- Page 14/57

 behind mode, and write-behind is only attempted on drives marked

 as write-mostly.

 --failfast

 subsequent devices listed in a --create or --add command will be

 flagged as 'failfast'. This is valid for RAID1 and RAID10

 only. IO requests to these devices will be encouraged to fail

 quickly rather than cause long delays due to error handling.

 Also no attempt is made to repair a read error on these devices.

 If an array becomes degraded so that the 'failfast' device is

 the only usable device, the 'failfast' flag will then be ignored

 and extended delays will be preferred to complete failure.

 The 'failfast' flag is appropriate for storage arrays which have

 a low probability of true failure, but which may sometimes cause

 unacceptable delays due to internal maintenance functions.

 --assume-clean

 Tell mdadm that the array pre-existed and is known to be clean.

 It can be useful when trying to recover from a major failure as

 you can be sure that no data will be affected unless you actu?

 ally write to the array. It can also be used when creating a

 RAID1 or RAID10 if you want to avoid the initial resync, however

 this practice ? while normally safe ? is not recommended. Use

 this only if you really know what you are doing.

 When the devices that will be part of a new array were filled

 with zeros before creation the operator knows the array is actu?

 ally clean. If that is the case, such as after running bad?

 blocks, this argument can be used to tell mdadm the facts the

 operator knows.

 When an array is resized to a larger size with --grow --size=

 the new space is normally resynced in that same way that the

 whole array is resynced at creation. From Linux version 3.0,

 --assume-clean can be used with that command to avoid the auto?

 matic resync.

 --backup-file= Page 15/57

 This is needed when --grow is used to increase the number of

 raid devices in a RAID5 or RAID6 if there are no spare devices

 available, or to shrink, change RAID level or layout. See the

 GROW MODE section below on RAID-DEVICES CHANGES. The file must

 be stored on a separate device, not on the RAID array being re?

 shaped.

 --data-offset=

 Arrays with 1.x metadata can leave a gap between the start of

 the device and the start of array data. This gap can be used

 for various metadata. The start of data is known as the

 data-offset. Normally an appropriate data offset is computed

 automatically. However it can be useful to set it explicitly

 such as when re-creating an array which was originally created

 using a different version of mdadm which computed a different

 offset.

 Setting the offset explicitly over-rides the default. The value

 given is in Kilobytes unless a suffix of 'K', 'M', 'G' or 'T' is

 used to explicitly indicate Kilobytes, Megabytes, Gigabytes or

 Terabytes respectively.

 Since Linux 3.4, --data-offset can also be used with --grow for

 some RAID levels (initially on RAID10). This allows the

 data-offset to be changed as part of the reshape process. When

 the data offset is changed, no backup file is required as the

 difference in offsets is used to provide the same functionality.

 When the new offset is earlier than the old offset, the number

 of devices in the array cannot shrink. When it is after the old

 offset, the number of devices in the array cannot increase.

 When creating an array, --data-offset can be specified as vari?

 able. In the case each member device is expected to have an

 offset appended to the name, separated by a colon. This makes

 it possible to recreate exactly an array which has varying data

 offsets (as can happen when different versions of mdadm are used

 to add different devices). Page 16/57

 --continue

 This option is complementary to the --freeze-reshape option for

 assembly. It is needed when --grow operation is interrupted and

 it is not restarted automatically due to --freeze-reshape usage

 during array assembly. This option is used together with -G , (

 --grow) command and device for a pending reshape to be contin?

 ued. All parameters required for reshape continuation will be

 read from array metadata. If initial --grow command had re?

 quired --backup-file= option to be set, continuation option will

 require to have exactly the same backup file given as well.

 Any other parameter passed together with --continue option will

 be ignored.

 -N, --name=

 Set a name for the array. This is currently only effective when

 creating an array with a version-1 superblock, or an array in a

 DDF container. The name is a simple textual string that can be

 used to identify array components when assembling. If name is

 needed but not specified, it is taken from the basename of the

 device that is being created. e.g. when creating /dev/md/home

 the name will default to home.

 -R, --run

 Insist that mdadm run the array, even if some of the components

 appear to be active in another array or filesystem. Normally

 mdadm will ask for confirmation before including such components

 in an array. This option causes that question to be suppressed.

 -f, --force

 Insist that mdadm accept the geometry and layout specified with?

 out question. Normally mdadm will not allow the creation of an

 array with only one device, and will try to create a RAID5 array

 with one missing drive (as this makes the initial resync work

 faster). With --force, mdadm will not try to be so clever.

 -o, --readonly

 Start the array read only rather than read-write as normal. No Page 17/57

 writes will be allowed to the array, and no resync, recovery, or

 reshape will be started. It works with Create, Assemble, Manage

 and Misc mode.

 -a, --auto{=yes,md,mdp,part,p}{NN}

 Instruct mdadm how to create the device file if needed, possibly

 allocating an unused minor number. "md" causes a non-partition?

 able array to be used (though since Linux 2.6.28, these array

 devices are in fact partitionable). "mdp", "part" or "p" causes

 a partitionable array (2.6 and later) to be used. "yes" re?

 quires the named md device to have a 'standard' format, and the

 type and minor number will be determined from this. With mdadm

 3.0, device creation is normally left up to udev so this option

 is unlikely to be needed. See DEVICE NAMES below.

 The argument can also come immediately after "-a". e.g. "-ap".

 If --auto is not given on the command line or in the config

 file, then the default will be --auto=yes.

 If --scan is also given, then any auto= entries in the config

 file will override the --auto instruction given on the command

 line.

 For partitionable arrays, mdadm will create the device file for

 the whole array and for the first 4 partitions. A different

 number of partitions can be specified at the end of this option

 (e.g. --auto=p7). If the device name ends with a digit, the

 partition names add a 'p', and a number, e.g. /dev/md/home1p3.

 If there is no trailing digit, then the partition names just

 have a number added, e.g. /dev/md/scratch3.

 If the md device name is in a 'standard' format as described in

 DEVICE NAMES, then it will be created, if necessary, with the

 appropriate device number based on that name. If the device

 name is not in one of these formats, then an unused device num?

 ber will be allocated. The device number will be considered un?

 used if there is no active array for that number, and there is

 no entry in /dev for that number and with a non-standard name. Page 18/57

 Names that are not in 'standard' format are only allowed in

 "/dev/md/".

 This is meaningful with --create or --build.

 -a, --add

 This option can be used in Grow mode in two cases.

 If the target array is a Linear array, then --add can be used to

 add one or more devices to the array. They are simply catenated

 on to the end of the array. Once added, the devices cannot be

 removed.

 If the --raid-disks option is being used to increase the number

 of devices in an array, then --add can be used to add some extra

 devices to be included in the array. In most cases this is not

 needed as the extra devices can be added as spares first, and

 then the number of raid disks can be changed. However, for

 RAID0 it is not possible to add spares. So to increase the num?

 ber of devices in a RAID0, it is necessary to set the new number

 of devices, and to add the new devices, in the same command.

 --nodes

 Only works when the array is created for a clustered environ?

 ment. It specifies the maximum number of nodes in the cluster

 that will use this device simultaneously. If not specified, this

 defaults to 4.

 --write-journal

 Specify journal device for the RAID-4/5/6 array. The journal de?

 vice should be an SSD with a reasonable lifetime.

 -k, --consistency-policy=

 Specify how the array maintains consistency in the case of an

 unexpected shutdown. Only relevant for RAID levels with redun?

 dancy. Currently supported options are:

 resync Full resync is performed and all redundancy is regener?

 ated when the array is started after an unclean shutdown.

 bitmap Resync assisted by a write-intent bitmap. Implicitly se?

 lected when using --bitmap. Page 19/57

 journal

 For RAID levels 4/5/6, the journal device is used to log

 transactions and replay after an unclean shutdown. Im?

 plicitly selected when using --write-journal.

 ppl For RAID5 only, Partial Parity Log is used to close the

 write hole and eliminate resync. PPL is stored in the

 metadata region of RAID member drives, no additional

 journal drive is needed.

 Can be used with --grow to change the consistency policy of an

 active array in some cases. See CONSISTENCY POLICY CHANGES be?

 low.

For assemble:

 -u, --uuid=

 uuid of array to assemble. Devices which don't have this uuid

 are excluded

 -m, --super-minor=

 Minor number of device that array was created for. Devices

 which don't have this minor number are excluded. If you create

 an array as /dev/md1, then all superblocks will contain the mi?

 nor number 1, even if the array is later assembled as /dev/md2.

 Giving the literal word "dev" for --super-minor will cause mdadm

 to use the minor number of the md device that is being assem?

 bled. e.g. when assembling /dev/md0, --super-minor=dev will

 look for super blocks with a minor number of 0.

 --super-minor is only relevant for v0.90 metadata, and should

 not normally be used. Using --uuid is much safer.

 -N, --name=

 Specify the name of the array to assemble. This must be the

 name that was specified when creating the array. It must either

 match the name stored in the superblock exactly, or it must

 match with the current homehost prefixed to the start of the

 given name.

 -f, --force Page 20/57

 Assemble the array even if the metadata on some devices appears

 to be out-of-date. If mdadm cannot find enough working devices

 to start the array, but can find some devices that are recorded

 as having failed, then it will mark those devices as working so

 that the array can be started. This works only for native. For

 external metadata it allows to start dirty degraded RAID 4, 5,

 6. An array which requires --force to be started may contain

 data corruption. Use it carefully.

 -R, --run

 Attempt to start the array even if fewer drives were given than

 were present last time the array was active. Normally if not

 all the expected drives are found and --scan is not used, then

 the array will be assembled but not started. With --run an at?

 tempt will be made to start it anyway.

 --no-degraded

 This is the reverse of --run in that it inhibits the startup of

 array unless all expected drives are present. This is only

 needed with --scan, and can be used if the physical connections

 to devices are not as reliable as you would like.

 -a, --auto{=no,yes,md,mdp,part}

 See this option under Create and Build options.

 -b, --bitmap=

 Specify the bitmap file that was given when the array was cre?

 ated. If an array has an internal bitmap, there is no need to

 specify this when assembling the array.

 --backup-file=

 If --backup-file was used while reshaping an array (e.g. chang?

 ing number of devices or chunk size) and the system crashed dur?

 ing the critical section, then the same --backup-file must be

 presented to --assemble to allow possibly corrupted data to be

 restored, and the reshape to be completed.

 --invalid-backup

 If the file needed for the above option is not available for any Page 21/57

 reason an empty file can be given together with this option to

 indicate that the backup file is invalid. In this case the data

 that was being rearranged at the time of the crash could be ir?

 recoverably lost, but the rest of the array may still be recov?

 erable. This option should only be used as a last resort if

 there is no way to recover the backup file.

 -U, --update=

 Update the superblock on each device while assembling the array.

 The argument given to this flag can be one of sparc2.2, sum?

 maries, uuid, name, nodes, homehost, home-cluster, resync, byte?

 order, devicesize, no-bitmap, bbl, no-bbl, ppl, no-ppl, lay?

 out-original, layout-alternate, layout-unspecified, metadata, or

 super-minor.

 The sparc2.2 option will adjust the superblock of an array what

 was created on a Sparc machine running a patched 2.2 Linux ker?

 nel. This kernel got the alignment of part of the superblock

 wrong. You can use the --examine --sparc2.2 option to mdadm to

 see what effect this would have.

 The super-minor option will update the preferred minor field on

 each superblock to match the minor number of the array being as?

 sembled. This can be useful if --examine reports a different

 "Preferred Minor" to --detail. In some cases this update will

 be performed automatically by the kernel driver. In particular,

 the update happens automatically at the first write to an array

 with redundancy (RAID level 1 or greater) on a 2.6 (or later)

 kernel.

 The uuid option will change the uuid of the array. If a UUID is

 given with the --uuid option that UUID will be used as a new

 UUID and will NOT be used to help identify the devices in the

 array. If no --uuid is given, a random UUID is chosen.

 The name option will change the name of the array as stored in

 the superblock. This is only supported for version-1 su?

 perblocks. Page 22/57

 The nodes option will change the nodes of the array as stored in

 the bitmap superblock. This option only works for a clustered

 environment.

 The homehost option will change the homehost as recorded in the

 superblock. For version-0 superblocks, this is the same as up?

 dating the UUID. For version-1 superblocks, this involves up?

 dating the name.

 The home-cluster option will change the cluster name as recorded

 in the superblock and bitmap. This option only works for a clus?

 tered environment.

 The resync option will cause the array to be marked dirty mean?

 ing that any redundancy in the array (e.g. parity for RAID5,

 copies for RAID1) may be incorrect. This will cause the RAID

 system to perform a "resync" pass to make sure that all redun?

 dant information is correct.

 The byteorder option allows arrays to be moved between machines

 with different byte-order, such as from a big-endian machine

 like a Sparc or some MIPS machines, to a little-endian x86_64

 machine. When assembling such an array for the first time after

 a move, giving --update=byteorder will cause mdadm to expect su?

 perblocks to have their byteorder reversed, and will correct

 that order before assembling the array. This is only valid with

 original (Version 0.90) superblocks.

 The summaries option will correct the summaries in the su?

 perblock. That is the counts of total, working, active, failed,

 and spare devices.

 The devicesize option will rarely be of use. It applies to ver?

 sion 1.1 and 1.2 metadata only (where the metadata is at the

 start of the device) and is only useful when the component de?

 vice has changed size (typically become larger). The version 1

 metadata records the amount of the device that can be used to

 store data, so if a device in a version 1.1 or 1.2 array becomes

 larger, the metadata will still be visible, but the extra space Page 23/57

 will not. In this case it might be useful to assemble the array

 with --update=devicesize. This will cause mdadm to determine

 the maximum usable amount of space on each device and update the

 relevant field in the metadata.

 The metadata option only works on v0.90 metadata arrays and will

 convert them to v1.0 metadata. The array must not be dirty

 (i.e. it must not need a sync) and it must not have a write-in?

 tent bitmap.

 The old metadata will remain on the devices, but will appear

 older than the new metadata and so will usually be ignored. The

 old metadata (or indeed the new metadata) can be removed by giv?

 ing the appropriate --metadata= option to --zero-superblock.

 The no-bitmap option can be used when an array has an internal

 bitmap which is corrupt in some way so that assembling the array

 normally fails. It will cause any internal bitmap to be ig?

 nored.

 The bbl option will reserve space in each device for a bad block

 list. This will be 4K in size and positioned near the end of

 any free space between the superblock and the data.

 The no-bbl option will cause any reservation of space for a bad

 block list to be removed. If the bad block list contains en?

 tries, this will fail, as removing the list could cause data

 corruption.

 The ppl option will enable PPL for a RAID5 array and reserve

 space for PPL on each device. There must be enough free space

 between the data and superblock and a write-intent bitmap or

 journal must not be used.

 The no-ppl option will disable PPL in the superblock.

 The layout-original and layout-alternate options are for RAID0

 arrays with non-uniform devices size that were in use before

 Linux 5.4. If the array was being used with Linux 3.13 or ear?

 lier, then to assemble the array on a new kernel, --update=lay?

 out-original must be given. If the array was created and used Page 24/57

 with a kernel from Linux 3.14 to Linux 5.3, then --update=lay?

 out-alternate must be given. This only needs to be given once.

 Subsequent assembly of the array will happen normally. For more

 information, see md(4).

 The layout-unspecified option reverts the effect of layout-orig?

 nal or layout-alternate and allows the array to be again used on

 a kernel prior to Linux 5.3. This option should be used with

 great caution.

 --freeze-reshape

 This option is intended to be used in start-up scripts during

 the initrd boot phase. When the array under reshape is assem?

 bled during the initrd phase, this option stops the reshape af?

 ter the reshape-critical section has been restored. This happens

 before the file system pivot operation and avoids loss of

 filesystem context. Losing file system context would cause re?

 shape to be broken.

 Reshape can be continued later using the --continue option for

 the grow command.

For Manage mode:

 -t, --test

 Unless a more serious error occurred, mdadm will exit with a

 status of 2 if no changes were made to the array and 0 if at

 least one change was made. This can be useful when an indirect

 specifier such as missing, detached or faulty is used in re?

 questing an operation on the array. --test will report failure

 if these specifiers didn't find any match.

 -a, --add

 hot-add listed devices. If a device appears to have recently

 been part of the array (possibly it failed or was removed) the

 device is re-added as described in the next point. If that

 fails or the device was never part of the array, the device is

 added as a hot-spare. If the array is degraded, it will immedi?

 ately start to rebuild data onto that spare. Page 25/57

 Note that this and the following options are only meaningful on

 array with redundancy. They don't apply to RAID0 or Linear.

 --re-add

 re-add a device that was previously removed from an array. If

 the metadata on the device reports that it is a member of the

 array, and the slot that it used is still vacant, then the de?

 vice will be added back to the array in the same position. This

 will normally cause the data for that device to be recovered.

 However, based on the event count on the device, the recovery

 may only require sections that are flagged by a write-intent

 bitmap to be recovered or may not require any recovery at all.

 When used on an array that has no metadata (i.e. it was built

 with --build) it will be assumed that bitmap-based recovery is

 enough to make the device fully consistent with the array.

 --re-add can also be accompanied by --update=devicesize, --up?

 date=bbl, or --update=no-bbl. See descriptions of these options

 when used in Assemble mode for an explanation of their use.

 If the device name given is missing then mdadm will try to find

 any device that looks like it should be part of the array but

 isn't and will try to re-add all such devices.

 If the device name given is faulty then mdadm will find all de?

 vices in the array that are marked faulty, remove them and at?

 tempt to immediately re-add them. This can be useful if you are

 certain that the reason for failure has been resolved.

 --add-spare

 Add a device as a spare. This is similar to --add except that

 it does not attempt --re-add first. The device will be added as

 a spare even if it looks like it could be a recent member of the

 array.

 -r, --remove

 remove listed devices. They must not be active. i.e. they

 should be failed or spare devices.

 As well as the name of a device file (e.g. /dev/sda1) the words Page 26/57

 failed, detached and names like set-A can be given to --remove.

 The first causes all failed devices to be removed. The second

 causes any device which is no longer connected to the system

 (i.e an 'open' returns ENXIO) to be removed. The third will re?

 move a set as described below under --fail.

 -f, --fail

 Mark listed devices as faulty. As well as the name of a device

 file, the word detached or a set name like set-A can be given.

 The former will cause any device that has been detached from the

 system to be marked as failed. It can then be removed.

 For RAID10 arrays where the number of copies evenly divides the

 number of devices, the devices can be conceptually divided into

 sets where each set contains a single complete copy of the data

 on the array. Sometimes a RAID10 array will be configured so

 that these sets are on separate controllers. In this case, all

 the devices in one set can be failed by giving a name like set-A

 or set-B to --fail. The appropriate set names are reported by

 --detail.

 --set-faulty

 same as --fail.

 --replace

 Mark listed devices as requiring replacement. As soon as a

 spare is available, it will be rebuilt and will replace the

 marked device. This is similar to marking a device as faulty,

 but the device remains in service during the recovery process to

 increase resilience against multiple failures. When the re?

 placement process finishes, the replaced device will be marked

 as faulty.

 --with This can follow a list of --replace devices. The devices listed

 after --with will preferentially be used to replace the devices

 listed after --replace. These devices must already be spare de?

 vices in the array.

 --write-mostly Page 27/57

 Subsequent devices that are added or re-added will have the

 'write-mostly' flag set. This is only valid for RAID1 and means

 that the 'md' driver will avoid reading from these devices if

 possible.

 --readwrite

 Subsequent devices that are added or re-added will have the

 'write-mostly' flag cleared.

 --cluster-confirm

 Confirm the existence of the device. This is issued in response

 to an --add request by a node in a cluster. When a node adds a

 device it sends a message to all nodes in the cluster to look

 for a device with a UUID. This translates to a udev notification

 with the UUID of the device to be added and the slot number. The

 receiving node must acknowledge this message with --cluster-con?

 firm. Valid arguments are <slot>:<devicename> in case the device

 is found or <slot>:missing in case the device is not found.

 --add-journal

 Add a journal to an existing array, or recreate journal for a

 RAID-4/5/6 array that lost a journal device. To avoid interrupt?

 ing ongoing write operations, --add-journal only works for array

 in Read-Only state.

 --failfast

 Subsequent devices that are added or re-added will have the

 'failfast' flag set. This is only valid for RAID1 and RAID10

 and means that the 'md' driver will avoid long timeouts on error

 handling where possible.

 --nofailfast

 Subsequent devices that are re-added will be re-added without

 the 'failfast' flag set.

 Each of these options requires that the first device listed is the ar?

 ray to be acted upon, and the remainder are component devices to be

 added, removed, marked as faulty, etc. Several different operations

 can be specified for different devices, e.g. Page 28/57

 mdadm /dev/md0 --add /dev/sda1 --fail /dev/sdb1 --remove /dev/sdb1

 Each operation applies to all devices listed until the next operation.

 If an array is using a write-intent bitmap, then devices which have

 been removed can be re-added in a way that avoids a full reconstruction

 but instead just updates the blocks that have changed since the device

 was removed. For arrays with persistent metadata (superblocks) this is

 done automatically. For arrays created with --build mdadm needs to be

 told that this device we removed recently with --re-add.

 Devices can only be removed from an array if they are not in active

 use, i.e. that must be spares or failed devices. To remove an active

 device, it must first be marked as faulty.

For Misc mode:

 -Q, --query

 Examine a device to see (1) if it is an md device and (2) if it

 is a component of an md array. Information about what is dis?

 covered is presented.

 -D, --detail

 Print details of one or more md devices.

 --detail-platform

 Print details of the platform's RAID capabilities (firmware /

 hardware topology) for a given metadata format. If used without

 an argument, mdadm will scan all controllers looking for their

 capabilities. Otherwise, mdadm will only look at the controller

 specified by the argument in the form of an absolute filepath or

 a link, e.g. /sys/devices/pci0000:00/0000:00:1f.2.

 -Y, --export

 When used with --detail, --detail-platform, --examine, or --in?

 cremental output will be formatted as key=value pairs for easy

 import into the environment.

 With --incremental The value MD_STARTED indicates whether an ar?

 ray was started (yes) or not, which may include a reason (un?

 safe, nothing, no). Also the value MD_FOREIGN indicates if the

 array is expected on this host (no), or seems to be from else? Page 29/57

 where (yes).

 -E, --examine

 Print contents of the metadata stored on the named device(s).

 Note the contrast between --examine and --detail. --examine ap?

 plies to devices which are components of an array, while --de?

 tail applies to a whole array which is currently active.

 --sparc2.2

 If an array was created on a SPARC machine with a 2.2 Linux ker?

 nel patched with RAID support, the superblock will have been

 created incorrectly, or at least incompatibly with 2.4 and later

 kernels. Using the --sparc2.2 flag with --examine will fix the

 superblock before displaying it. If this appears to do the

 right thing, then the array can be successfully assembled using

 --assemble --update=sparc2.2.

 -X, --examine-bitmap

 Report information about a bitmap file. The argument is either

 an external bitmap file or an array component in case of an in?

 ternal bitmap. Note that running this on an array device (e.g.

 /dev/md0) does not report the bitmap for that array.

 --examine-badblocks

 List the bad-blocks recorded for the device, if a bad-blocks

 list has been configured. Currently only 1.x and IMSM metadata

 support bad-blocks lists.

 --dump=directory

 --restore=directory

 Save metadata from lists devices, or restore metadata to listed

 devices.

 -R, --run

 start a partially assembled array. If --assemble did not find

 enough devices to fully start the array, it might leaving it

 partially assembled. If you wish, you can then use --run to

 start the array in degraded mode.

 -S, --stop Page 30/57

 deactivate array, releasing all resources.

 -o, --readonly

 mark array as readonly.

 -w, --readwrite

 mark array as readwrite.

 --zero-superblock

 If the device contains a valid md superblock, the block is over?

 written with zeros. With --force the block where the superblock

 would be is overwritten even if it doesn't appear to be valid.

 Note: Be careful when calling --zero-superblock with clustered

 raid. Make sure the array isn't used or assembled in another

 cluster node before executing it.

 --kill-subarray=

 If the device is a container and the argument to --kill-subarray

 specifies an inactive subarray in the container, then the subar?

 ray is deleted. Deleting all subarrays will leave an 'empty-

 container' or spare superblock on the drives. See --zero-su?

 perblock for completely removing a superblock. Note that some

 formats depend on the subarray index for generating a UUID, this

 command will fail if it would change the UUID of an active sub?

 array.

 --update-subarray=

 If the device is a container and the argument to --update-subar?

 ray specifies a subarray in the container, then attempt to up?

 date the given superblock field in the subarray. See below in

 MISC MODE for details.

 -t, --test

 When used with --detail, the exit status of mdadm is set to re?

 flect the status of the device. See below in MISC MODE for de?

 tails.

 -W, --wait

 For each md device given, wait for any resync, recovery, or re?

 shape activity to finish before returning. mdadm will return Page 31/57

 with success if it actually waited for every device listed, oth?

 erwise it will return failure.

 --wait-clean

 For each md device given, or each device in /proc/mdstat if

 --scan is given, arrange for the array to be marked clean as

 soon as possible. mdadm will return with success if the array

 uses external metadata and we successfully waited. For native

 arrays, this returns immediately as the kernel handles dirty-

 clean transitions at shutdown. No action is taken if safe-mode

 handling is disabled.

 --action=

 Set the "sync_action" for all md devices given to one of idle,

 frozen, check, repair. Setting to idle will abort any currently

 running action though some actions will automatically restart.

 Setting to frozen will abort any current action and ensure no

 other action starts automatically.

 Details of check and repair can be found it md(4) under SCRUB?

 BING AND MISMATCHES.

For Incremental Assembly mode:

 --rebuild-map, -r

 Rebuild the map file (/run/mdadm/map) that mdadm uses to help

 track which arrays are currently being assembled.

 --run, -R

 Run any array assembled as soon as a minimal number of devices

 is available, rather than waiting until all expected devices are

 present.

 --scan, -s

 Only meaningful with -R this will scan the map file for arrays

 that are being incrementally assembled and will try to start any

 that are not already started. If any such array is listed in

 mdadm.conf as requiring an external bitmap, that bitmap will be

 attached first.

 --fail, -f Page 32/57

 This allows the hot-plug system to remove devices that have

 fully disappeared from the kernel. It will first fail and then

 remove the device from any array it belongs to. The device name

 given should be a kernel device name such as "sda", not a name

 in /dev.

 --path=

 Only used with --fail. The 'path' given will be recorded so

 that if a new device appears at the same location it can be au?

 tomatically added to the same array. This allows the failed de?

 vice to be automatically replaced by a new device without meta?

 data if it appears at specified path. This option is normally

 only set by an udev script.

For Monitor mode:

 -m, --mail

 Give a mail address to send alerts to.

 -p, --program, --alert

 Give a program to be run whenever an event is detected.

 -y, --syslog

 Cause all events to be reported through 'syslog'. The messages

 have facility of 'daemon' and varying priorities.

 -d, --delay

 Give a delay in seconds. mdadm polls the md arrays and then

 waits this many seconds before polling again. The default is 60

 seconds. Since 2.6.16, there is no need to reduce this as the

 kernel alerts mdadm immediately when there is any change.

 -r, --increment

 Give a percentage increment. mdadm will generate RebuildNN

 events with the given percentage increment.

 -f, --daemonise

 Tell mdadm to run as a background daemon if it decides to moni?

 tor anything. This causes it to fork and run in the child, and

 to disconnect from the terminal. The process id of the child is

 written to stdout. This is useful with --scan which will only Page 33/57

 continue monitoring if a mail address or alert program is found

 in the config file.

 -i, --pid-file

 When mdadm is running in daemon mode, write the pid of the dae?

 mon process to the specified file, instead of printing it on

 standard output.

 -1, --oneshot

 Check arrays only once. This will generate NewArray events and

 more significantly DegradedArray and SparesMissing events. Run?

 ning

 mdadm --monitor --scan -1

 from a cron script will ensure regular notification of any de?

 graded arrays.

 -t, --test

 Generate a TestMessage alert for every array found at startup.

 This alert gets mailed and passed to the alert program. This

 can be used for testing that alert message do get through suc?

 cessfully.

 --no-sharing

 This inhibits the functionality for moving spares between ar?

 rays. Only one monitoring process started with --scan but with?

 out this flag is allowed, otherwise the two could interfere with

 each other.

ASSEMBLE MODE

 Usage: mdadm --assemble md-device options-and-component-devices...

 Usage: mdadm --assemble --scan md-devices-and-options...

 Usage: mdadm --assemble --scan options...

 This usage assembles one or more RAID arrays from pre-existing compo?

 nents. For each array, mdadm needs to know the md device, the identity

 of the array, and the number of component devices. These can be found

 in a number of ways.

 In the first usage example (without the --scan) the first device given

 is the md device. In the second usage example, all devices listed are Page 34/57

 treated as md devices and assembly is attempted. In the third (where

 no devices are listed) all md devices that are listed in the configura?

 tion file are assembled. If no arrays are described by the configura?

 tion file, then any arrays that can be found on unused devices will be

 assembled.

 If precisely one device is listed, but --scan is not given, then mdadm

 acts as though --scan was given and identity information is extracted

 from the configuration file.

 The identity can be given with the --uuid option, the --name option, or

 the --super-minor option, will be taken from the md-device record in

 the config file, or will be taken from the super block of the first

 component-device listed on the command line.

 Devices can be given on the --assemble command line or in the config

 file. Only devices which have an md superblock which contains the

 right identity will be considered for any array.

 The config file is only used if explicitly named with --config or re?

 quested with (a possibly implicit) --scan. In the latter case, the de?

 fault config file is used. See mdadm.conf(5) for more details.

 If --scan is not given, then the config file will only be used to find

 the identity of md arrays.

 Normally the array will be started after it is assembled. However if

 --scan is not given and not all expected drives were listed, then the

 array is not started (to guard against usage errors). To insist that

 the array be started in this case (as may work for RAID1, 4, 5, 6, or

 10), give the --run flag.

 If udev is active, mdadm does not create any entries in /dev but leaves

 that to udev. It does record information in /run/mdadm/map which will

 allow udev to choose the correct name.

 If mdadm detects that udev is not configured, it will create the de?

 vices in /dev itself.

 In Linux kernels prior to version 2.6.28 there were two distinct types

 of md devices that could be created: one that could be partitioned us?

 ing standard partitioning tools and one that could not. Since 2.6.28 Page 35/57

 that distinction is no longer relevant as both types of devices can be

 partitioned. mdadm will normally create the type that originally could

 not be partitioned as it has a well-defined major number (9).

 Prior to 2.6.28, it is important that mdadm chooses the correct type of

 array device to use. This can be controlled with the --auto option.

 In particular, a value of "mdp" or "part" or "p" tells mdadm to use a

 partitionable device rather than the default.

 In the no-udev case, the value given to --auto can be suffixed by a

 number. This tells mdadm to create that number of partition devices

 rather than the default of 4.

 The value given to --auto can also be given in the configuration file

 as a word starting auto= on the ARRAY line for the relevant array.

 Auto-Assembly

 When --assemble is used with --scan and no devices are listed, mdadm

 will first attempt to assemble all the arrays listed in the config

 file.

 If no arrays are listed in the config (other than those marked <ig?

 nore>) it will look through the available devices for possible arrays

 and will try to assemble anything that it finds. Arrays which are

 tagged as belonging to the given homehost will be assembled and started

 normally. Arrays which do not obviously belong to this host are given

 names that are expected not to conflict with anything local, and are

 started "read-auto" so that nothing is written to any device until the

 array is written to. i.e. automatic resync etc is delayed.

 If mdadm finds a consistent set of devices that look like they should

 comprise an array, and if the superblock is tagged as belonging to the

 given home host, it will automatically choose a device name and try to

 assemble the array. If the array uses version-0.90 metadata, then the

 minor number as recorded in the superblock is used to create a name in

 /dev/md/ so for example /dev/md/3. If the array uses version-1 meta?

 data, then the name from the superblock is used to similarly create a

 name in /dev/md/ (the name will have any 'host' prefix stripped first).

 This behaviour can be modified by the AUTO line in the mdadm.conf con? Page 36/57

 figuration file. This line can indicate that specific metadata type

 should, or should not, be automatically assembled. If an array is

 found which is not listed in mdadm.conf and has a metadata format that

 is denied by the AUTO line, then it will not be assembled. The AUTO

 line can also request that all arrays identified as being for this

 homehost should be assembled regardless of their metadata type. See

 mdadm.conf(5) for further details.

 Note: Auto-assembly cannot be used for assembling and activating some

 arrays which are undergoing reshape. In particular as the backup-file

 cannot be given, any reshape which requires a backup file to continue

 cannot be started by auto-assembly. An array which is growing to more

 devices and has passed the critical section can be assembled using

 auto-assembly.

BUILD MODE

 Usage: mdadm --build md-device --chunk=X --level=Y --raid-devices=Z de?

 vices

 This usage is similar to --create. The difference is that it creates

 an array without a superblock. With these arrays there is no differ?

 ence between initially creating the array and subsequently assembling

 the array, except that hopefully there is useful data there in the sec?

 ond case.

 The level may raid0, linear, raid1, raid10, multipath, or faulty, or

 one of their synonyms. All devices must be listed and the array will

 be started once complete. It will often be appropriate to use --as?

 sume-clean with levels raid1 or raid10.

CREATE MODE

 Usage: mdadm --create md-device --chunk=X --level=Y

 --raid-devices=Z devices

 This usage will initialise a new md array, associate some devices with

 it, and activate the array.

 The named device will normally not exist when mdadm --create is run,

 but will be created by udev once the array becomes active.

 The max length md-device name is limited to 32 characters. Different Page 37/57

 metadata types have more strict limitation (like IMSM where only 16

 characters are allowed). For that reason, long name could be truncated

 or rejected, it depends on metadata policy.

 As devices are added, they are checked to see if they contain RAID su?

 perblocks or filesystems. They are also checked to see if the variance

 in device size exceeds 1%.

 If any discrepancy is found, the array will not automatically be run,

 though the presence of a --run can override this caution.

 To create a "degraded" array in which some devices are missing, simply

 give the word "missing" in place of a device name. This will cause

 mdadm to leave the corresponding slot in the array empty. For a RAID4

 or RAID5 array at most one slot can be "missing"; for a RAID6 array at

 most two slots. For a RAID1 array, only one real device needs to be

 given. All of the others can be "missing".

 When creating a RAID5 array, mdadm will automatically create a degraded

 array with an extra spare drive. This is because building the spare

 into a degraded array is in general faster than resyncing the parity on

 a non-degraded, but not clean, array. This feature can be overridden

 with the --force option.

 When creating an array with version-1 metadata a name for the array is

 required. If this is not given with the --name option, mdadm will

 choose a name based on the last component of the name of the device be?

 ing created. So if /dev/md3 is being created, then the name 3 will be

 chosen. If /dev/md/home is being created, then the name home will be

 used.

 When creating a partition based array, using mdadm with version-1.x

 metadata, the partition type should be set to 0xDA (non fs-data). This

 type of selection allows for greater precision since using any other

 [RAID auto-detect (0xFD) or a GNU/Linux partition (0x83)], might create

 problems in the event of array recovery through a live cdrom.

 A new array will normally get a randomly assigned 128bit UUID which is

 very likely to be unique. If you have a specific need, you can choose

 a UUID for the array by giving the --uuid= option. Be warned that cre? Page 38/57

 ating two arrays with the same UUID is a recipe for disaster. Also,

 using --uuid= when creating a v0.90 array will silently override any

 --homehost= setting.

 If the array type supports a write-intent bitmap, and if the devices in

 the array exceed 100G is size, an internal write-intent bitmap will au?

 tomatically be added unless some other option is explicitly requested

 with the --bitmap option or a different consistency policy is selected

 with the --consistency-policy option. In any case, space for a bitmap

 will be reserved so that one can be added later with --grow --bit?

 map=internal.

 If the metadata type supports it (currently only 1.x and IMSM meta?

 data), space will be allocated to store a bad block list. This allows

 a modest number of bad blocks to be recorded, allowing the drive to re?

 main in service while only partially functional.

 When creating an array within a CONTAINER mdadm can be given either the

 list of devices to use, or simply the name of the container. The for?

 mer case gives control over which devices in the container will be used

 for the array. The latter case allows mdadm to automatically choose

 which devices to use based on how much spare space is available.

 The General Management options that are valid with --create are:

 --run insist on running the array even if some devices look like they

 might be in use.

 --readonly

 start the array in readonly mode.

MANAGE MODE

 Usage: mdadm device options... devices...

 This usage will allow individual devices in an array to be failed, re?

 moved or added. It is possible to perform multiple operations with on

 command. For example:

 mdadm /dev/md0 -f /dev/hda1 -r /dev/hda1 -a /dev/hda1

 will firstly mark /dev/hda1 as faulty in /dev/md0 and will then remove

 it from the array and finally add it back in as a spare. However, only

 one md array can be affected by a single command. Page 39/57

 When a device is added to an active array, mdadm checks to see if it

 has metadata on it which suggests that it was recently a member of the

 array. If it does, it tries to "re-add" the device. If there have

 been no changes since the device was removed, or if the array has a

 write-intent bitmap which has recorded whatever changes there were,

 then the device will immediately become a full member of the array and

 those differences recorded in the bitmap will be resolved.

MISC MODE

 Usage: mdadm options ... devices ...

 MISC mode includes a number of distinct operations that operate on dis?

 tinct devices. The operations are:

 --query

 The device is examined to see if it is (1) an active md array,

 or (2) a component of an md array. The information discovered

 is reported.

 --detail

 The device should be an active md device. mdadm will display a

 detailed description of the array. --brief or --scan will cause

 the output to be less detailed and the format to be suitable for

 inclusion in mdadm.conf. The exit status of mdadm will normally

 be 0 unless mdadm failed to get useful information about the de?

 vice(s); however, if the --test option is given, then the exit

 status will be:

 0 The array is functioning normally.

 1 The array has at least one failed device.

 2 The array has multiple failed devices such that it is un?

 usable.

 4 There was an error while trying to get information about

 the device.

 --detail-platform

 Print detail of the platform's RAID capabilities (firmware /

 hardware topology). If the metadata is specified with -e or

 --metadata= then the return status will be: Page 40/57

 0 metadata successfully enumerated its platform components

 on this system

 1 metadata is platform independent

 2 metadata failed to find its platform components on this

 system

 --update-subarray=

 If the device is a container and the argument to --update-subar?

 ray specifies a subarray in the container, then attempt to up?

 date the given superblock field in the subarray. Similar to up?

 dating an array in "assemble" mode, the field to update is se?

 lected by -U or --update= option. The supported options are

 name, ppl, no-ppl, bitmap and no-bitmap.

 The name option updates the subarray name in the metadata, it

 may not affect the device node name or the device node symlink

 until the subarray is re-assembled. If updating name would

 change the UUID of an active subarray this operation is blocked,

 and the command will end in an error.

 The ppl and no-ppl options enable and disable PPL in the meta?

 data. Currently supported only for IMSM subarrays.

 The bitmap and no-bitmap options enable and disable write-intent

 bitmap in the metadata. Currently supported only for IMSM subar?

 rays.

 --examine

 The device should be a component of an md array. mdadm will

 read the md superblock of the device and display the contents.

 If --brief or --scan is given, then multiple devices that are

 components of the one array are grouped together and reported in

 a single entry suitable for inclusion in mdadm.conf.

 Having --scan without listing any devices will cause all devices

 listed in the config file to be examined.

 --dump=directory

 If the device contains RAID metadata, a file will be created in

 the directory and the metadata will be written to it. The file Page 41/57

 will be the same size as the device and will have the metadata

 written at the same location as it exists in the device. How?

 ever, the file will be "sparse" so that only those blocks con?

 taining metadata will be allocated. The total space used will be

 small.

 The filename used in the directory will be the base name of the

 device. Further, if any links appear in /dev/disk/by-id which

 point to the device, then hard links to the file will be created

 in directory based on these by-id names.

 Multiple devices can be listed and their metadata will all be

 stored in the one directory.

 --restore=directory

 This is the reverse of --dump. mdadm will locate a file in the

 directory that has a name appropriate for the given device and

 will restore metadata from it. Names that match /dev/disk/by-id

 names are preferred, however if two of those refer to different

 files, mdadm will not choose between them but will abort the op?

 eration.

 If a file name is given instead of a directory then mdadm will

 restore from that file to a single device, always provided the

 size of the file matches that of the device, and the file con?

 tains valid metadata.

 --stop The devices should be active md arrays which will be deacti?

 vated, as long as they are not currently in use.

 --run This will fully activate a partially assembled md array.

 --readonly

 This will mark an active array as read-only, providing that it

 is not currently being used.

 --readwrite

 This will change a readonly array back to being read/write.

 --scan For all operations except --examine, --scan will cause the oper?

 ation to be applied to all arrays listed in /proc/mdstat. For

 --examine, --scan causes all devices listed in the config file Page 42/57

 to be examined.

 -b, --brief

 Be less verbose. This is used with --detail and --examine. Us?

 ing --brief with --verbose gives an intermediate level of ver?

 bosity.

MONITOR MODE

 Usage: mdadm --monitor options... devices...

 Monitor option can work in two modes:

 ? system wide mode, follow all md devices based on /proc/mdstat,

 ? follow only specified MD devices in command line.

 --scan - indicates system wide mode. Option causes the monitor to track

 all md devices that appear in /proc/mdstat. If it is not set, then at

 least one device must be specified.

 Monitor usage causes mdadm to periodically poll a number of md arrays

 and to report on any events noticed.

 In both modes, monitor will work as long as there is an active array

 with redundancy and it is defined to follow (for --scan every array is

 followed).

 As well as reporting events, mdadm may move a spare drive from one ar?

 ray to another if they are in the same spare-group or domain and if the

 destination array has a failed drive but no spares.

 The result of monitoring the arrays is the generation of events. These

 events are passed to a separate program (if specified) and may be

 mailed to a given E-mail address.

 When passing events to a program, the program is run once for each

 event, and is given 2 or 3 command-line arguments: the first is the

 name of the event (see below), the second is the name of the md device

 which is affected, and the third is the name of a related device if

 relevant (such as a component device that has failed).

 If --scan is given, then a program or an e-mail address must be speci?

 fied on the command line or in the config file. If neither are avail?

 able, then mdadm will not monitor anything. For devices given directly

 in command line, without program or email specified, each event is re? Page 43/57

 ported to stdout.

 Note: For systems where is configured via systemd, mdmonitor(mdmoni?

 tor.service) should be configured. The service is designed to be pri?

 mary solution for array monitoring, it is configured to work in system

 wide mode. It is automatically started and stopped according to cur?

 rent state and types of MD arrays in system. The service may require

 additional configuration, like e-mail or delay. That should be done in

 mdadm.conf.

 The different events are:

 DeviceDisappeared

 An md array which previously was configured appears to no

 longer be configured. (syslog priority: Critical)

 If mdadm was told to monitor an array which is RAID0 or Lin?

 ear, then it will report DeviceDisappeared with the extra

 information Wrong-Level. This is because RAID0 and Linear

 do not support the device-failed, hot-spare and resync oper?

 ations which are monitored.

 RebuildStarted

 An md array started reconstruction (e.g. recovery, resync,

 reshape, check, repair). (syslog priority: Warning)

 RebuildNN

 Where NN is a two-digit number (eg. 05, 48). This indicates

 that the rebuild has reached that percentage of the total.

 The events are generated at a fixed increment from 0. The

 increment size may be specified with a command-line option

 (the default is 20). (syslog priority: Warning)

 RebuildFinished

 An md array that was rebuilding, isn't any more, either be?

 cause it finished normally or was aborted. (syslog priority:

 Warning)

 Fail An active component device of an array has been marked as

 faulty. (syslog priority: Critical)

 FailSpare Page 44/57

 A spare component device which was being rebuilt to replace

 a faulty device has failed. (syslog priority: Critical)

 SpareActive

 A spare component device which was being rebuilt to replace

 a faulty device has been successfully rebuilt and has been

 made active. (syslog priority: Info)

 NewArray

 A new md array has been detected in the /proc/mdstat file.

 (syslog priority: Info)

 DegradedArray

 A newly noticed array appears to be degraded. This message

 is not generated when mdadm notices a drive failure which

 causes degradation, but only when mdadm notices that an ar?

 ray is degraded when it first sees the array. (syslog pri?

 ority: Critical)

 MoveSpare

 A spare drive has been moved from one array in a spare-group

 or domain to another to allow a failed drive to be replaced.

 (syslog priority: Info)

 SparesMissing

 If mdadm has been told, via the config file, that an array

 should have a certain number of spare devices, and mdadm de?

 tects that it has fewer than this number when it first sees

 the array, it will report a SparesMissing message. (syslog

 priority: Warning)

 TestMessage

 An array was found at startup, and the --test flag was

 given. (syslog priority: Info)

 Only Fail, FailSpare, DegradedArray, SparesMissing and TestMessage

 cause Email to be sent. All events cause the program to be run. The

 program is run with two or three arguments: the event name, the array

 device and possibly a second device.

 Each event has an associated array device (e.g. /dev/md1) and possibly Page 45/57

 a second device. For Fail, FailSpare, and SpareActive the second de?

 vice is the relevant component device. For MoveSpare the second device

 is the array that the spare was moved from.

 For mdadm to move spares from one array to another, the different ar?

 rays need to be labeled with the same spare-group or the spares must be

 allowed to migrate through matching POLICY domains in the configuration

 file. The spare-group name can be any string; it is only necessary

 that different spare groups use different names.

 When mdadm detects that an array in a spare group has fewer active de?

 vices than necessary for the complete array, and has no spare devices,

 it will look for another array in the same spare group that has a full

 complement of working drives and a spare. It will then attempt to re?

 move the spare from the second array and add it to the first. If the

 removal succeeds but the adding fails, then it is added back to the

 original array.

 If the spare group for a degraded array is not defined, mdadm will look

 at the rules of spare migration specified by POLICY lines in mdadm.conf

 and then follow similar steps as above if a matching spare is found.

GROW MODE

 The GROW mode is used for changing the size or shape of an active ar?

 ray.

 During the kernel 2.6 era the following changes were added:

 ? change the "size" attribute for RAID1, RAID4, RAID5 and RAID6.

 ? increase or decrease the "raid-devices" attribute of RAID0, RAID1,

 RAID4, RAID5, and RAID6.

 ? change the chunk-size and layout of RAID0, RAID4, RAID5, RAID6 and

 RAID10.

 ? convert between RAID1 and RAID5, between RAID5 and RAID6, between

 RAID0, RAID4, and RAID5, and between RAID0 and RAID10 (in the

 near-2 mode).

 ? add a write-intent bitmap to any array which supports these bit?

 maps, or remove a write-intent bitmap from such an array.

 ? change the array's consistency policy. Page 46/57

 Using GROW on containers is currently supported only for Intel's IMSM

 container format. The number of devices in a container can be in?

 creased - which affects all arrays in the container - or an array in a

 container can be converted between levels where those levels are sup?

 ported by the container, and the conversion is on of those listed

 above.

 Notes:

 ? Intel's native checkpointing doesn't use --backup-file option and

 it is transparent for assembly feature.

 ? Roaming between Windows(R) and Linux systems for IMSM metadata is

 not supported during grow process.

 ? When growing a raid0 device, the new component disk size (or exter?

 nal backup size) should be larger than LCM(old, new) * chunk-size *

 2, where LCM() is the least common multiple of the old and new

 count of component disks, and "* 2" comes from the fact that mdadm

 refuses to use more than half of a spare device for backup space.

 SIZE CHANGES

 Normally when an array is built the "size" is taken from the smallest

 of the drives. If all the small drives in an arrays are, over time,

 removed and replaced with larger drives, then you could have an array

 of large drives with only a small amount used. In this situation,

 changing the "size" with "GROW" mode will allow the extra space to

 start being used. If the size is increased in this way, a "resync"

 process will start to make sure the new parts of the array are synchro?

 nised.

 Note that when an array changes size, any filesystem that may be stored

 in the array will not automatically grow or shrink to use or vacate the

 space. The filesystem will need to be explicitly told to use the extra

 space after growing, or to reduce its size prior to shrinking the ar?

 ray.

 Also, the size of an array cannot be changed while it has an active

 bitmap. If an array has a bitmap, it must be removed before the size

 can be changed. Once the change is complete a new bitmap can be cre? Page 47/57

 ated.

 Note: --grow --size is not yet supported for external file bitmap.

 RAID-DEVICES CHANGES

 A RAID1 array can work with any number of devices from 1 upwards

 (though 1 is not very useful). There may be times which you want to

 increase or decrease the number of active devices. Note that this is

 different to hot-add or hot-remove which changes the number of inactive

 devices.

 When reducing the number of devices in a RAID1 array, the slots which

 are to be removed from the array must already be vacant. That is, the

 devices which were in those slots must be failed and removed.

 When the number of devices is increased, any hot spares that are

 present will be activated immediately.

 Changing the number of active devices in a RAID5 or RAID6 is much more

 effort. Every block in the array will need to be read and written back

 to a new location. From 2.6.17, the Linux Kernel is able to increase

 the number of devices in a RAID5 safely, including restarting an inter?

 rupted "reshape". From 2.6.31, the Linux Kernel is able to increase or

 decrease the number of devices in a RAID5 or RAID6.

 From 2.6.35, the Linux Kernel is able to convert a RAID0 in to a RAID4

 or RAID5. mdadm uses this functionality and the ability to add devices

 to a RAID4 to allow devices to be added to a RAID0. When requested to

 do this, mdadm will convert the RAID0 to a RAID4, add the necessary

 disks and make the reshape happen, and then convert the RAID4 back to

 RAID0.

 When decreasing the number of devices, the size of the array will also

 decrease. If there was data in the array, it could get destroyed and

 this is not reversible, so you should firstly shrink the filesystem on

 the array to fit within the new size. To help prevent accidents, mdadm

 requires that the size of the array be decreased first with mdadm

 --grow --array-size. This is a reversible change which simply makes

 the end of the array inaccessible. The integrity of any data can then

 be checked before the non-reversible reduction in the number of devices Page 48/57

 is request.

 When relocating the first few stripes on a RAID5 or RAID6, it is not

 possible to keep the data on disk completely consistent and crash-

 proof. To provide the required safety, mdadm disables writes to the

 array while this "critical section" is reshaped, and takes a backup of

 the data that is in that section. For grows, this backup may be stored

 in any spare devices that the array has, however it can also be stored

 in a separate file specified with the --backup-file option, and is re?

 quired to be specified for shrinks, RAID level changes and layout

 changes. If this option is used, and the system does crash during the

 critical period, the same file must be passed to --assemble to restore

 the backup and reassemble the array. When shrinking rather than grow?

 ing the array, the reshape is done from the end towards the beginning,

 so the "critical section" is at the end of the reshape.

 LEVEL CHANGES

 Changing the RAID level of any array happens instantaneously. However

 in the RAID5 to RAID6 case this requires a non-standard layout of the

 RAID6 data, and in the RAID6 to RAID5 case that non-standard layout is

 required before the change can be accomplished. So while the level

 change is instant, the accompanying layout change can take quite a long

 time. A --backup-file is required. If the array is not simultaneously

 being grown or shrunk, so that the array size will remain the same -

 for example, reshaping a 3-drive RAID5 into a 4-drive RAID6 - the

 backup file will be used not just for a "critical section" but through?

 out the reshape operation, as described below under LAYOUT CHANGES.

 CHUNK-SIZE AND LAYOUT CHANGES

 Changing the chunk-size or layout without also changing the number of

 devices as the same time will involve re-writing all blocks in-place.

 To ensure against data loss in the case of a crash, a --backup-file

 must be provided for these changes. Small sections of the array will

 be copied to the backup file while they are being rearranged. This

 means that all the data is copied twice, once to the backup and once to

 the new layout on the array, so this type of reshape will go very Page 49/57

 slowly.

 If the reshape is interrupted for any reason, this backup file must be

 made available to mdadm --assemble so the array can be reassembled.

 Consequently, the file cannot be stored on the device being reshaped.

 BITMAP CHANGES

 A write-intent bitmap can be added to, or removed from, an active ar?

 ray. Either internal bitmaps, or bitmaps stored in a separate file,

 can be added. Note that if you add a bitmap stored in a file which is

 in a filesystem that is on the RAID array being affected, the system

 will deadlock. The bitmap must be on a separate filesystem.

 CONSISTENCY POLICY CHANGES

 The consistency policy of an active array can be changed by using the

 --consistency-policy option in Grow mode. Currently this works only for

 the ppl and resync policies and allows to enable or disable the RAID5

 Partial Parity Log (PPL).

INCREMENTAL MODE

 Usage: mdadm --incremental [--run] [--quiet] component-device [op?

 tional-aliases-for-device]

 Usage: mdadm --incremental --fail component-device

 Usage: mdadm --incremental --rebuild-map

 Usage: mdadm --incremental --run --scan

 This mode is designed to be used in conjunction with a device discovery

 system. As devices are found in a system, they can be passed to mdadm

 --incremental to be conditionally added to an appropriate array.

 Conversely, it can also be used with the --fail flag to do just the op?

 posite and find whatever array a particular device is part of and re?

 move the device from that array.

 If the device passed is a CONTAINER device created by a previous call

 to mdadm, then rather than trying to add that device to an array, all

 the arrays described by the metadata of the container will be started.

 mdadm performs a number of tests to determine if the device is part of

 an array, and which array it should be part of. If an appropriate ar?

 ray is found, or can be created, mdadm adds the device to the array and Page 50/57

 conditionally starts the array.

 Note that mdadm will normally only add devices to an array which were

 previously working (active or spare) parts of that array. The support

 for automatic inclusion of a new drive as a spare in some array re?

 quires a configuration through POLICY in config file.

 The tests that mdadm makes are as follow:

 + Is the device permitted by mdadm.conf? That is, is it listed in

 a DEVICES line in that file. If DEVICES is absent then the de?

 fault it to allow any device. Similarly if DEVICES contains the

 special word partitions then any device is allowed. Otherwise

 the device name given to mdadm, or one of the aliases given, or

 an alias found in the filesystem, must match one of the names or

 patterns in a DEVICES line.

 This is the only context where the aliases are used. They are

 usually provided by a udev rules mentioning $env{DEVLINKS}.

 + Does the device have a valid md superblock? If a specific meta?

 data version is requested with --metadata or -e then only that

 style of metadata is accepted, otherwise mdadm finds any known

 version of metadata. If no md metadata is found, the device may

 be still added to an array as a spare if POLICY allows.

 mdadm keeps a list of arrays that it has partially assembled in

 /run/mdadm/map. If no array exists which matches the metadata on the

 new device, mdadm must choose a device name and unit number. It does

 this based on any name given in mdadm.conf or any name information

 stored in the metadata. If this name suggests a unit number, that num?

 ber will be used, otherwise a free unit number will be chosen. Nor?

 mally mdadm will prefer to create a partitionable array, however if the

 CREATE line in mdadm.conf suggests that a non-partitionable array is

 preferred, that will be honoured.

 If the array is not found in the config file and its metadata does not

 identify it as belonging to the "homehost", then mdadm will choose a

 name for the array which is certain not to conflict with any array

 which does belong to this host. It does this be adding an underscore Page 51/57

 and a small number to the name preferred by the metadata.

 Once an appropriate array is found or created and the device is added,

 mdadm must decide if the array is ready to be started. It will nor?

 mally compare the number of available (non-spare) devices to the number

 of devices that the metadata suggests need to be active. If there are

 at least that many, the array will be started. This means that if any

 devices are missing the array will not be restarted.

 As an alternative, --run may be passed to mdadm in which case the array

 will be run as soon as there are enough devices present for the data to

 be accessible. For a RAID1, that means one device will start the ar?

 ray. For a clean RAID5, the array will be started as soon as all but

 one drive is present.

 Note that neither of these approaches is really ideal. If it can be

 known that all device discovery has completed, then

 mdadm -IRs

 can be run which will try to start all arrays that are being incremen?

 tally assembled. They are started in "read-auto" mode in which they

 are read-only until the first write request. This means that no meta?

 data updates are made and no attempt at resync or recovery happens.

 Further devices that are found before the first write can still be

 added safely.

ENVIRONMENT

 This section describes environment variables that affect how mdadm op?

 erates.

 MDADM_NO_MDMON

 Setting this value to 1 will prevent mdadm from automatically

 launching mdmon. This variable is intended primarily for debug?

 ging mdadm/mdmon.

 MDADM_NO_UDEV

 Normally, mdadm does not create any device nodes in /dev, but

 leaves that task to udev. If udev appears not to be configured,

 or if this environment variable is set to '1', the mdadm will

 create and devices that are needed. Page 52/57

 MDADM_NO_SYSTEMCTL

 If mdadm detects that systemd is in use it will normally request

 systemd to start various background tasks (particularly mdmon)

 rather than forking and running them in the background. This

 can be suppressed by setting MDADM_NO_SYSTEMCTL=1.

 IMSM_NO_PLATFORM

 A key value of IMSM metadata is that it allows interoperability

 with boot ROMs on Intel platforms, and with other major operat?

 ing systems. Consequently, mdadm will only allow an IMSM array

 to be created or modified if detects that it is running on an

 Intel platform which supports IMSM, and supports the particular

 configuration of IMSM that is being requested (some functional?

 ity requires newer OROM support).

 These checks can be suppressed by setting IMSM_NO_PLATFORM=1 in

 the environment. This can be useful for testing or for disaster

 recovery. You should be aware that interoperability may be com?

 promised by setting this value.

 MDADM_GROW_ALLOW_OLD

 If an array is stopped while it is performing a reshape and that

 reshape was making use of a backup file, then when the array is

 re-assembled mdadm will sometimes complain that the backup file

 is too old. If this happens and you are certain it is the right

 backup file, you can over-ride this check by setting

 MDADM_GROW_ALLOW_OLD=1 in the environment.

 MDADM_CONF_AUTO

 Any string given in this variable is added to the start of the

 AUTO line in the config file, or treated as the whole AUTO line

 if none is given. It can be used to disable certain metadata

 types when mdadm is called from a boot script. For example

 export MDADM_CONF_AUTO='-ddf -imsm'

 will make sure that mdadm does not automatically assemble any

 DDF or IMSM arrays that are found. This can be useful on sys?

 tems configured to manage such arrays with dmraid. Page 53/57

EXAMPLES

 mdadm --query /dev/name-of-device

 This will find out if a given device is a RAID array, or is part of

 one, and will provide brief information about the device.

 mdadm --assemble --scan

 This will assemble and start all arrays listed in the standard config

 file. This command will typically go in a system startup file.

 mdadm --stop --scan

 This will shut down all arrays that can be shut down (i.e. are not cur?

 rently in use). This will typically go in a system shutdown script.

 mdadm --follow --scan --delay=120

 If (and only if) there is an Email address or program given in the

 standard config file, then monitor the status of all arrays listed in

 that file by polling them ever 2 minutes.

 mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/hd[ac]1

 Create /dev/md0 as a RAID1 array consisting of /dev/hda1 and /dev/hdc1.

 echo 'DEVICE /dev/hd*[0-9] /dev/sd*[0-9]' > mdadm.conf

 mdadm --detail --scan >> mdadm.conf

 This will create a prototype config file that describes currently ac?

 tive arrays that are known to be made from partitions of IDE or SCSI

 drives. This file should be reviewed before being used as it may con?

 tain unwanted detail.

 echo 'DEVICE /dev/hd[a-z] /dev/sd*[a-z]' > mdadm.conf

 mdadm --examine --scan --config=mdadm.conf >> mdadm.conf

 This will find arrays which could be assembled from existing IDE and

 SCSI whole drives (not partitions), and store the information in the

 format of a config file. This file is very likely to contain unwanted

 detail, particularly the devices= entries. It should be reviewed and

 edited before being used as an actual config file.

 mdadm --examine --brief --scan --config=partitions

 mdadm -Ebsc partitions

 Create a list of devices by reading /proc/partitions, scan these for

 RAID superblocks, and printout a brief listing of all that were found. Page 54/57

 mdadm -Ac partitions -m 0 /dev/md0

 Scan all partitions and devices listed in /proc/partitions and assemble

 /dev/md0 out of all such devices with a RAID superblock with a minor

 number of 0.

 mdadm --monitor --scan --daemonise > /run/mdadm/mon.pid

 If config file contains a mail address or alert program, run mdadm in

 the background in monitor mode monitoring all md devices. Also write

 pid of mdadm daemon to /run/mdadm/mon.pid.

 mdadm -Iq /dev/somedevice

 Try to incorporate newly discovered device into some array as appropri?

 ate.

 mdadm --incremental --rebuild-map --run --scan

 Rebuild the array map from any current arrays, and then start any that

 can be started.

 mdadm /dev/md4 --fail detached --remove detached

 Any devices which are components of /dev/md4 will be marked as faulty

 and then remove from the array.

 mdadm --grow /dev/md4 --level=6 --backup-file=/root/backup-md4

 The array /dev/md4 which is currently a RAID5 array will be converted

 to RAID6. There should normally already be a spare drive attached to

 the array as a RAID6 needs one more drive than a matching RAID5.

 mdadm --create /dev/md/ddf --metadata=ddf --raid-disks 6 /dev/sd[a-f]

 Create a DDF array over 6 devices.

 mdadm --create /dev/md/home -n3 -l5 -z 30000000 /dev/md/ddf

 Create a RAID5 array over any 3 devices in the given DDF set. Use only

 30 gigabytes of each device.

 mdadm -A /dev/md/ddf1 /dev/sd[a-f]

 Assemble a pre-exist ddf array.

 mdadm -I /dev/md/ddf1

 Assemble all arrays contained in the ddf array, assigning names as ap?

 propriate.

 mdadm --create --help

 Provide help about the Create mode. Page 55/57

 mdadm --config --help

 Provide help about the format of the config file.

 mdadm --help

 Provide general help.

FILES

 /proc/mdstat

 If you're using the /proc filesystem, /proc/mdstat lists all active md

 devices with information about them. mdadm uses this to find arrays

 when --scan is given in Misc mode, and to monitor array reconstruction

 on Monitor mode.

 /etc/mdadm.conf (or /etc/mdadm/mdadm.conf)

 Default config file. See mdadm.conf(5) for more details.

 /etc/mdadm.conf.d (or /etc/mdadm/mdadm.conf.d)

 Default directory containing configuration files. See mdadm.conf(5)

 for more details.

 /run/mdadm/map

 When --incremental mode is used, this file gets a list of arrays cur?

 rently being created.

DEVICE NAMES

 mdadm understand two sorts of names for array devices.

 The first is the so-called 'standard' format name, which matches the

 names used by the kernel and which appear in /proc/mdstat.

 The second sort can be freely chosen, but must reside in /dev/md/.

 When giving a device name to mdadm to create or assemble an array, ei?

 ther full path name such as /dev/md0 or /dev/md/home can be given, or

 just the suffix of the second sort of name, such as home can be given.

 When mdadm chooses device names during auto-assembly or incremental as?

 sembly, it will sometimes add a small sequence number to the end of the

 name to avoid conflicted between multiple arrays that have the same

 name. If mdadm can reasonably determine that the array really is meant

 for this host, either by a hostname in the metadata, or by the presence

 of the array in mdadm.conf, then it will leave off the suffix if possi?

 ble. Also if the homehost is specified as <ignore> mdadm will only use Page 56/57

 a suffix if a different array of the same name already exists or is

 listed in the config file.

 The standard names for non-partitioned arrays (the only sort of md ar?

 ray available in 2.4 and earlier) are of the form

 /dev/mdNN

 where NN is a number. The standard names for partitionable arrays (as

 available from 2.6 onwards) are of the form:

 /dev/md_dNN

 Partition numbers should be indicated by adding "pMM" to these, thus

 "/dev/md/d1p2".

 From kernel version 2.6.28 the "non-partitioned array" can actually be

 partitioned. So the "md_dNN" names are no longer needed, and parti?

 tions such as "/dev/mdNNpXX" are possible.

 From kernel version 2.6.29 standard names can be non-numeric following

 the form:

 /dev/md_XXX

 where XXX is any string. These names are supported by mdadm since ver?

 sion 3.3 provided they are enabled in mdadm.conf.

NOTE

 mdadm was previously known as mdctl.

SEE ALSO

 For further information on mdadm usage, MD and the various levels of

 RAID, see:

 https://raid.wiki.kernel.org/

 (based upon Jakob ?stergaard's Software-RAID.HOWTO)

 The latest version of mdadm should always be available from

 https://www.kernel.org/pub/linux/utils/raid/mdadm/

 Related man pages:

 mdmon(8), mdadm.conf(5), md(4).

v4.2 MDADM(8)

Page 57/57

