
Rocky Enterprise Linux 9.2 Manual Pages on command 'mcheck_check_all.3'

$ man mcheck_check_all.3

MCHECK(3) Linux Programmer's Manual MCHECK(3)

NAME

 mcheck, mcheck_check_all, mcheck_pedantic, mprobe - heap consistency

 checking

SYNOPSIS

 #include <mcheck.h>

 int mcheck(void (*abortfunc)(enum mcheck_status mstatus));

 int mcheck_pedantic(void (*abortfunc)(enum mcheck_status mstatus));

 void mcheck_check_all(void);

 enum mcheck_status mprobe(void *ptr);

DESCRIPTION

 The mcheck() function installs a set of debugging hooks for the mal?

 loc(3) family of memory-allocation functions. These hooks cause cer?

 tain consistency checks to be performed on the state of the heap. The

 checks can detect application errors such as freeing a block of memory

 more than once or corrupting the bookkeeping data structures that imme?

 diately precede a block of allocated memory.

 To be effective, the mcheck() function must be called before the first Page 1/4

 call to malloc(3) or a related function. In cases where this is diffi?

 cult to ensure, linking the program with -lmcheck inserts an implicit

 call to mcheck() (with a NULL argument) before the first call to a mem?

 ory-allocation function.

 The mcheck_pedantic() function is similar to mcheck(), but performs

 checks on all allocated blocks whenever one of the memory-allocation

 functions is called. This can be very slow!

 The mcheck_check_all() function causes an immediate check on all allo?

 cated blocks. This call is effective only if mcheck() is called be?

 forehand.

 If the system detects an inconsistency in the heap, the caller-supplied

 function pointed to by abortfunc is invoked with a single argument,

 mstatus, that indicates what type of inconsistency was detected. If

 abortfunc is NULL, a default function prints an error message on stderr

 and calls abort(3).

 The mprobe() function performs a consistency check on the block of al?

 located memory pointed to by ptr. The mcheck() function should be

 called beforehand (otherwise mprobe() returns MCHECK_DISABLED).

 The following list describes the values returned by mprobe() or passed

 as the mstatus argument when abortfunc is invoked:

 MCHECK_DISABLED (mprobe() only)

 mcheck() was not called before the first memory allocation func?

 tion was called. Consistency checking is not possible.

 MCHECK_OK (mprobe() only)

 No inconsistency detected.

 MCHECK_HEAD

 Memory preceding an allocated block was clobbered.

 MCHECK_TAIL

 Memory following an allocated block was clobbered.

 MCHECK_FREE

 A block of memory was freed twice.

RETURN VALUE

 mcheck() and mcheck_pedantic() return 0 on success, or -1 on error. Page 2/4

VERSIONS

 The mcheck_pedantic() and mcheck_check_all() functions are available

 since glibc 2.2. The mcheck() and mprobe() functions are present since

 at least glibc 2.0

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?mcheck(), mcheck_pedantic(), ? Thread safety ? MT-Unsafe race:mcheck ?

 ?mcheck_check_all(), mprobe() ? ? const:malloc_hooks ?

 ???

CONFORMING TO

 These functions are GNU extensions.

NOTES

 Linking a program with -lmcheck and using the MALLOC_CHECK_ environment

 variable (described in mallopt(3)) cause the same kinds of errors to be

 detected. But, using MALLOC_CHECK_ does not require the application to

 be relinked.

EXAMPLES

 The program below calls mcheck() with a NULL argument and then frees

 the same block of memory twice. The following shell session demon?

 strates what happens when running the program:

 $./a.out

 About to free

 About to free a second time

 block freed twice

 Aborted (core dumped)

 Program source

 #include <stdlib.h>

 #include <stdio.h>

 #include <mcheck.h> Page 3/4

 int

 main(int argc, char *argv[])

 {

 char *p;

 if (mcheck(NULL) != 0) {

 fprintf(stderr, "mcheck() failed\n");

 exit(EXIT_FAILURE);

 }

 p = malloc(1000);

 fprintf(stderr, "About to free\n");

 free(p);

 fprintf(stderr, "\nAbout to free a second time\n");

 free(p);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 malloc(3), mallopt(3), mtrace(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-06-09 MCHECK(3)

Page 4/4

