
Rocky Enterprise Linux 9.2 Manual Pages on command 'mallopt.3'

$ man mallopt.3

MALLOPT(3) Linux Programmer's Manual MALLOPT(3)

NAME

 mallopt - set memory allocation parameters

SYNOPSIS

 #include <malloc.h>

 int mallopt(int param, int value);

DESCRIPTION

 The mallopt() function adjusts parameters that control the behavior of

 the memory-allocation functions (see malloc(3)). The param argument

 specifies the parameter to be modified, and value specifies the new

 value for that parameter.

 The following values can be specified for param:

 M_ARENA_MAX

 If this parameter has a nonzero value, it defines a hard limit

 on the maximum number of arenas that can be created. An arena

 represents a pool of memory that can be used by malloc(3) (and

 similar) calls to service allocation requests. Arenas are

 thread safe and therefore may have multiple concurrent memory Page 1/11

 requests. The trade-off is between the number of threads and

 the number of arenas. The more arenas you have, the lower the

 per-thread contention, but the higher the memory usage.

 The default value of this parameter is 0, meaning that the limit

 on the number of arenas is determined according to the setting

 of M_ARENA_TEST.

 This parameter has been available since glibc 2.10 via --en?

 able-experimental-malloc, and since glibc 2.15 by default. In

 some versions of the allocator there was no limit on the number

 of created arenas (e.g., CentOS 5, RHEL 5).

 When employing newer glibc versions, applications may in some

 cases exhibit high contention when accessing arenas. In these

 cases, it may be beneficial to increase M_ARENA_MAX to match the

 number of threads. This is similar in behavior to strategies

 taken by tcmalloc and jemalloc (e.g., per-thread allocation

 pools).

 M_ARENA_TEST

 This parameter specifies a value, in number of arenas created,

 at which point the system configuration will be examined to de?

 termine a hard limit on the number of created arenas. (See

 M_ARENA_MAX for the definition of an arena.)

 The computation of the arena hard limit is implementation-de?

 fined and is usually calculated as a multiple of the number of

 available CPUs. Once the hard limit is computed, the result is

 final and constrains the total number of arenas.

 The default value for the M_ARENA_TEST parameter is 2 on systems

 where sizeof(long) is 4; otherwise the default value is 8.

 This parameter has been available since glibc 2.10 via --en?

 able-experimental-malloc, and since glibc 2.15 by default.

 The value of M_ARENA_TEST is not used when M_ARENA_MAX has a

 nonzero value.

 M_CHECK_ACTION

 Setting this parameter controls how glibc responds when various Page 2/11

 kinds of programming errors are detected (e.g., freeing the same

 pointer twice). The 3 least significant bits (2, 1, and 0) of

 the value assigned to this parameter determine the glibc behav?

 ior, as follows:

 Bit 0 If this bit is set, then print a one-line message on

 stderr that provides details about the error. The mes?

 sage starts with the string "*** glibc detected ***",

 followed by the program name, the name of the memory-al?

 location function in which the error was detected, a

 brief description of the error, and the memory address

 where the error was detected.

 Bit 1 If this bit is set, then, after printing any error mes?

 sage specified by bit 0, the program is terminated by

 calling abort(3). In glibc versions since 2.4, if bit 0

 is also set, then, between printing the error message and

 aborting, the program also prints a stack trace in the

 manner of backtrace(3), and prints the process's memory

 mapping in the style of /proc/[pid]/maps (see proc(5)).

 Bit 2 (since glibc 2.4)

 This bit has an effect only if bit 0 is also set. If

 this bit is set, then the one-line message describing the

 error is simplified to contain just the name of the func?

 tion where the error was detected and the brief descrip?

 tion of the error.

 The remaining bits in value are ignored.

 Combining the above details, the following numeric values are

 meaningful for M_CHECK_ACTION:

 0 Ignore error conditions; continue execution (with unde?

 fined results).

 1 Print a detailed error message and continue execution.

 2 Abort the program.

 3 Print detailed error message, stack trace, and memory

 mappings, and abort the program. Page 3/11

 5 Print a simple error message and continue execution.

 7 Print simple error message, stack trace, and memory map?

 pings, and abort the program.

 Since glibc 2.3.4, the default value for the M_CHECK_ACTION pa?

 rameter is 3. In glibc version 2.3.3 and earlier, the default

 value is 1.

 Using a nonzero M_CHECK_ACTION value can be useful because oth?

 erwise a crash may happen much later, and the true cause of the

 problem is then very hard to track down.

 M_MMAP_MAX

 This parameter specifies the maximum number of allocation re?

 quests that may be simultaneously serviced using mmap(2). This

 parameter exists because some systems have a limited number of

 internal tables for use by mmap(2), and using more than a few of

 them may degrade performance.

 The default value is 65,536, a value which has no special sig?

 nificance and which serves only as a safeguard. Setting this

 parameter to 0 disables the use of mmap(2) for servicing large

 allocation requests.

 M_MMAP_THRESHOLD

 For allocations greater than or equal to the limit specified (in

 bytes) by M_MMAP_THRESHOLD that can't be satisfied from the free

 list, the memory-allocation functions employ mmap(2) instead of

 increasing the program break using sbrk(2).

 Allocating memory using mmap(2) has the significant advantage

 that the allocated memory blocks can always be independently re?

 leased back to the system. (By contrast, the heap can be

 trimmed only if memory is freed at the top end.) On the other

 hand, there are some disadvantages to the use of mmap(2): de?

 allocated space is not placed on the free list for reuse by

 later allocations; memory may be wasted because mmap(2) alloca?

 tions must be page-aligned; and the kernel must perform the ex?

 pensive task of zeroing out memory allocated via mmap(2). Bal? Page 4/11

 ancing these factors leads to a default setting of 128*1024 for

 the M_MMAP_THRESHOLD parameter.

 The lower limit for this parameter is 0. The upper limit is DE?

 FAULT_MMAP_THRESHOLD_MAX: 512*1024 on 32-bit systems or

 4*1024*1024*sizeof(long) on 64-bit systems.

 Note: Nowadays, glibc uses a dynamic mmap threshold by default.

 The initial value of the threshold is 128*1024, but when blocks

 larger than the current threshold and less than or equal to DE?

 FAULT_MMAP_THRESHOLD_MAX are freed, the threshold is adjusted

 upward to the size of the freed block. When dynamic mmap

 thresholding is in effect, the threshold for trimming the heap

 is also dynamically adjusted to be twice the dynamic mmap

 threshold. Dynamic adjustment of the mmap threshold is disabled

 if any of the M_TRIM_THRESHOLD, M_TOP_PAD, M_MMAP_THRESHOLD, or

 M_MMAP_MAX parameters is set.

 M_MXFAST (since glibc 2.3)

 Set the upper limit for memory allocation requests that are sat?

 isfied using "fastbins". (The measurement unit for this parame?

 ter is bytes.) Fastbins are storage areas that hold deallocated

 blocks of memory of the same size without merging adjacent free

 blocks. Subsequent reallocation of blocks of the same size can

 be handled very quickly by allocating from the fastbin, although

 memory fragmentation and the overall memory footprint of the

 program can increase.

 The default value for this parameter is 64*sizeof(size_t)/4

 (i.e., 64 on 32-bit architectures). The range for this parame?

 ter is 0 to 80*sizeof(size_t)/4. Setting M_MXFAST to 0 disables

 the use of fastbins.

 M_PERTURB (since glibc 2.4)

 If this parameter is set to a nonzero value, then bytes of allo?

 cated memory (other than allocations via calloc(3)) are initial?

 ized to the complement of the value in the least significant

 byte of value, and when allocated memory is released using Page 5/11

 free(3), the freed bytes are set to the least significant byte

 of value. This can be useful for detecting errors where pro?

 grams incorrectly rely on allocated memory being initialized to

 zero, or reuse values in memory that has already been freed.

 The default value for this parameter is 0.

 M_TOP_PAD

 This parameter defines the amount of padding to employ when

 calling sbrk(2) to modify the program break. (The measurement

 unit for this parameter is bytes.) This parameter has an effect

 in the following circumstances:

 * When the program break is increased, then M_TOP_PAD bytes are

 added to the sbrk(2) request.

 * When the heap is trimmed as a consequence of calling free(3)

 (see the discussion of M_TRIM_THRESHOLD) this much free space

 is preserved at the top of the heap.

 In either case, the amount of padding is always rounded to a

 system page boundary.

 Modifying M_TOP_PAD is a trade-off between increasing the number

 of system calls (when the parameter is set low) and wasting un?

 used memory at the top of the heap (when the parameter is set

 high).

 The default value for this parameter is 128*1024.

 M_TRIM_THRESHOLD

 When the amount of contiguous free memory at the top of the heap

 grows sufficiently large, free(3) employs sbrk(2) to release

 this memory back to the system. (This can be useful in programs

 that continue to execute for a long period after freeing a sig?

 nificant amount of memory.) The M_TRIM_THRESHOLD parameter

 specifies the minimum size (in bytes) that this block of memory

 must reach before sbrk(2) is used to trim the heap.

 The default value for this parameter is 128*1024. Setting

 M_TRIM_THRESHOLD to -1 disables trimming completely.

 Modifying M_TRIM_THRESHOLD is a trade-off between increasing the Page 6/11

 number of system calls (when the parameter is set low) and wast?

 ing unused memory at the top of the heap (when the parameter is

 set high).

 Environment variables

 A number of environment variables can be defined to modify some of the

 same parameters as are controlled by mallopt(). Using these variables

 has the advantage that the source code of the program need not be

 changed. To be effective, these variables must be defined before the

 first call to a memory-allocation function. (If the same parameters

 are adjusted via mallopt(), then the mallopt() settings take prece?

 dence.) For security reasons, these variables are ignored in set-user-

 ID and set-group-ID programs.

 The environment variables are as follows (note the trailing underscore

 at the end of the name of some variables):

 MALLOC_ARENA_MAX

 Controls the same parameter as mallopt() M_ARENA_MAX.

 MALLOC_ARENA_TEST

 Controls the same parameter as mallopt() M_ARENA_TEST.

 MALLOC_CHECK_

 This environment variable controls the same parameter as mal?

 lopt() M_CHECK_ACTION. If this variable is set to a nonzero

 value, then a special implementation of the memory-allocation

 functions is used. (This is accomplished using the mal?

 loc_hook(3) feature.) This implementation performs additional

 error checking, but is slower than the standard set of memory-

 allocation functions. (This implementation does not detect all

 possible errors; memory leaks can still occur.)

 The value assigned to this environment variable should be a sin?

 gle digit, whose meaning is as described for M_CHECK_ACTION.

 Any characters beyond the initial digit are ignored.

 For security reasons, the effect of MALLOC_CHECK_ is disabled by

 default for set-user-ID and set-group-ID programs. However, if

 the file /etc/suid-debug exists (the content of the file is ir? Page 7/11

 relevant), then MALLOC_CHECK_ also has an effect for set-user-ID

 and set-group-ID programs.

 MALLOC_MMAP_MAX_

 Controls the same parameter as mallopt() M_MMAP_MAX.

 MALLOC_MMAP_THRESHOLD_

 Controls the same parameter as mallopt() M_MMAP_THRESHOLD.

 MALLOC_PERTURB_

 Controls the same parameter as mallopt() M_PERTURB.

 MALLOC_TRIM_THRESHOLD_

 Controls the same parameter as mallopt() M_TRIM_THRESHOLD.

 MALLOC_TOP_PAD_

 Controls the same parameter as mallopt() M_TOP_PAD.

RETURN VALUE

 On success, mallopt() returns 1. On error, it returns 0.

ERRORS

 On error, errno is not set.

CONFORMING TO

 This function is not specified by POSIX or the C standards. A similar

 function exists on many System V derivatives, but the range of values

 for param varies across systems. The SVID defined options M_MXFAST,

 M_NLBLKS, M_GRAIN, and M_KEEP, but only the first of these is imple?

 mented in glibc.

BUGS

 Specifying an invalid value for param does not generate an error.

 A calculation error within the glibc implementation means that a call

 of the form:

 mallopt(M_MXFAST, n)

 does not result in fastbins being employed for all allocations of size

 up to n. To ensure desired results, n should be rounded up to the next

 multiple greater than or equal to (2k+1)*sizeof(size_t), where k is an

 integer.

 If mallopt() is used to set M_PERTURB, then, as expected, the bytes of

 allocated memory are initialized to the complement of the byte in Page 8/11

 value, and when that memory is freed, the bytes of the region are ini?

 tialized to the byte specified in value. However, there is an off-by-

 sizeof(size_t) error in the implementation: instead of initializing

 precisely the block of memory being freed by the call free(p), the

 block starting at p+sizeof(size_t) is initialized.

EXAMPLES

 The program below demonstrates the use of M_CHECK_ACTION. If the pro?

 gram is supplied with an (integer) command-line argument, then that ar?

 gument is used to set the M_CHECK_ACTION parameter. The program then

 allocates a block of memory, and frees it twice (an error).

 The following shell session shows what happens when we run this program

 under glibc, with the default value for M_CHECK_ACTION:

 $./a.out

 main(): returned from first free() call

 *** glibc detected *** ./a.out: double free or corruption (top): 0x09d30008 ***

 ======= Backtrace: =========

 /lib/libc.so.6(+0x6c501)[0x523501]

 /lib/libc.so.6(+0x6dd70)[0x524d70]

 /lib/libc.so.6(cfree+0x6d)[0x527e5d]

 ./a.out[0x80485db]

 /lib/libc.so.6(__libc_start_main+0xe7)[0x4cdce7]

 ./a.out[0x8048471]

 ======= Memory map: ========

 001e4000-001fe000 r-xp 00000000 08:06 1083555 /lib/libgcc_s.so.1

 001fe000-001ff000 r--p 00019000 08:06 1083555 /lib/libgcc_s.so.1

 [some lines omitted]

 b7814000-b7817000 rw-p 00000000 00:00 0

 bff53000-bff74000 rw-p 00000000 00:00 0 [stack]

 Aborted (core dumped)

 The following runs show the results when employing other values for

 M_CHECK_ACTION:

 $./a.out 1 # Diagnose error and continue

 main(): returned from first free() call Page 9/11

 *** glibc detected *** ./a.out: double free or corruption (top): 0x09cbe008 ***

 main(): returned from second free() call

 $./a.out 2 # Abort without error message

 main(): returned from first free() call

 Aborted (core dumped)

 $./a.out 0 # Ignore error and continue

 main(): returned from first free() call

 main(): returned from second free() call

 The next run shows how to set the same parameter using the MAL?

 LOC_CHECK_ environment variable:

 $ MALLOC_CHECK_=1 ./a.out

 main(): returned from first free() call

 *** glibc detected *** ./a.out: free(): invalid pointer: 0x092c2008 ***

 main(): returned from second free() call

 Program source

 #include <malloc.h>

 #include <stdio.h>

 #include <stdlib.h>

 int

 main(int argc, char *argv[])

 {

 char *p;

 if (argc > 1) {

 if (mallopt(M_CHECK_ACTION, atoi(argv[1])) != 1) {

 fprintf(stderr, "mallopt() failed");

 exit(EXIT_FAILURE);

 }

 }

 p = malloc(1000);

 if (p == NULL) {

 fprintf(stderr, "malloc() failed");

 exit(EXIT_FAILURE);

 } Page 10/11

 free(p);

 printf("main(): returned from first free() call\n");

 free(p);

 printf("main(): returned from second free() call\n");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 mmap(2), sbrk(2), mallinfo(3), malloc(3), malloc_hook(3),

 malloc_info(3), malloc_stats(3), malloc_trim(3), mcheck(3), mtrace(3),

 posix_memalign(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 MALLOPT(3)

Page 11/11

