
Rocky Enterprise Linux 9.2 Manual Pages on command 'mallinfo.3'

$ man mallinfo.3

MALLINFO(3) Linux Programmer's Manual MALLINFO(3)

NAME

 mallinfo - obtain memory allocation information

SYNOPSIS

 #include <malloc.h>

 struct mallinfo mallinfo(void);

DESCRIPTION

 The mallinfo() function returns a copy of a structure containing infor?

 mation about memory allocations performed by malloc(3) and related

 functions.

 Note that not all allocations are visible to mallinfo(); see BUGS and

 consider using malloc_info(3) instead.

 The returned structure is defined as follows:

 struct mallinfo {

 int arena; /* Non-mmapped space allocated (bytes) */

 int ordblks; /* Number of free chunks */

 int smblks; /* Number of free fastbin blocks */

 int hblks; /* Number of mmapped regions */ Page 1/7

 int hblkhd; /* Space allocated in mmapped regions (bytes) */

 int usmblks; /* See below */

 int fsmblks; /* Space in freed fastbin blocks (bytes) */

 int uordblks; /* Total allocated space (bytes) */

 int fordblks; /* Total free space (bytes) */

 int keepcost; /* Top-most, releasable space (bytes) */

 };

 The fields of the mallinfo structure contain the following information:

 arena The total amount of memory allocated by means other than

 mmap(2) (i.e., memory allocated on the heap). This figure

 includes both in-use blocks and blocks on the free list.

 ordblks The number of ordinary (i.e., non-fastbin) free blocks.

 smblks The number of fastbin free blocks (see mallopt(3)).

 hblks The number of blocks currently allocated using mmap(2). (See

 the discussion of M_MMAP_THRESHOLD in mallopt(3).)

 hblkhd The number of bytes in blocks currently allocated using

 mmap(2).

 usmblks This field is unused, and is always 0. Historically, it was

 the "highwater mark" for allocated space?that is, the maximum

 amount of space that was ever allocated (in bytes); this

 field was maintained only in nonthreading environments.

 fsmblks The total number of bytes in fastbin free blocks.

 uordblks The total number of bytes used by in-use allocations.

 fordblks The total number of bytes in free blocks.

 keepcost The total amount of releasable free space at the top of the

 heap. This is the maximum number of bytes that could ideally

 (i.e., ignoring page alignment restrictions, and so on) be

 released by malloc_trim(3).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ? Page 2/7

 ??

 ?mallinfo() ? Thread safety ? MT-Unsafe init const:mallopt ?

 ??

 mallinfo() would access some global internal objects. If modify them

 with non-atomically, may get inconsistent results. The identifier mal?

 lopt in const:mallopt mean that mallopt() would modify the global in?

 ternal objects with atomics, that make sure mallinfo() is safe enough,

 others modify with non-atomically maybe not.

CONFORMING TO

 This function is not specified by POSIX or the C standards. A similar

 function exists on many System V derivatives, and was specified in the

 SVID.

BUGS

 Information is returned for only the main memory allocation area. Al?

 locations in other arenas are excluded. See malloc_stats(3) and mal?

 loc_info(3) for alternatives that include information about other are?

 nas.

 The fields of the mallinfo structure are typed as int. However, be?

 cause some internal bookkeeping values may be of type long, the re?

 ported values may wrap around zero and thus be inaccurate.

EXAMPLES

 The program below employs mallinfo() to retrieve memory allocation sta?

 tistics before and after allocating and freeing some blocks of memory.

 The statistics are displayed on standard output.

 The first two command-line arguments specify the number and size of

 blocks to be allocated with malloc(3).

 The remaining three arguments specify which of the allocated blocks

 should be freed with free(3). These three arguments are optional, and

 specify (in order): the step size to be used in the loop that frees

 blocks (the default is 1, meaning free all blocks in the range); the

 ordinal position of the first block to be freed (default 0, meaning the

 first allocated block); and a number one greater than the ordinal posi?

 tion of the last block to be freed (default is one greater than the Page 3/7

 maximum block number). If these three arguments are omitted, then the

 defaults cause all allocated blocks to be freed.

 In the following example run of the program, 1000 allocations of 100

 bytes are performed, and then every second allocated block is freed:

 $./a.out 1000 100 2

 ============== Before allocating blocks ==============

 Total non-mmapped bytes (arena): 0

 # of free chunks (ordblks): 1

 # of free fastbin blocks (smblks): 0

 # of mapped regions (hblks): 0

 Bytes in mapped regions (hblkhd): 0

 Max. total allocated space (usmblks): 0

 Free bytes held in fastbins (fsmblks): 0

 Total allocated space (uordblks): 0

 Total free space (fordblks): 0

 Topmost releasable block (keepcost): 0

 ============== After allocating blocks ==============

 Total non-mmapped bytes (arena): 135168

 # of free chunks (ordblks): 1

 # of free fastbin blocks (smblks): 0

 # of mapped regions (hblks): 0

 Bytes in mapped regions (hblkhd): 0

 Max. total allocated space (usmblks): 0

 Free bytes held in fastbins (fsmblks): 0

 Total allocated space (uordblks): 104000

 Total free space (fordblks): 31168

 Topmost releasable block (keepcost): 31168

 ============== After freeing blocks ==============

 Total non-mmapped bytes (arena): 135168

 # of free chunks (ordblks): 501

 # of free fastbin blocks (smblks): 0

 # of mapped regions (hblks): 0

 Bytes in mapped regions (hblkhd): 0 Page 4/7

 Max. total allocated space (usmblks): 0

 Free bytes held in fastbins (fsmblks): 0

 Total allocated space (uordblks): 52000

 Total free space (fordblks): 83168

 Topmost releasable block (keepcost): 31168

 Program source

 #include <malloc.h>

 #include <stdlib.h>

 #include <string.h>

 static void

 display_mallinfo(void)

 {

 struct mallinfo mi;

 mi = mallinfo();

 printf("Total non-mmapped bytes (arena): %d\n", mi.arena);

 printf("# of free chunks (ordblks): %d\n", mi.ordblks);

 printf("# of free fastbin blocks (smblks): %d\n", mi.smblks);

 printf("# of mapped regions (hblks): %d\n", mi.hblks);

 printf("Bytes in mapped regions (hblkhd): %d\n", mi.hblkhd);

 printf("Max. total allocated space (usmblks): %d\n", mi.usmblks);

 printf("Free bytes held in fastbins (fsmblks): %d\n", mi.fsmblks);

 printf("Total allocated space (uordblks): %d\n", mi.uordblks);

 printf("Total free space (fordblks): %d\n", mi.fordblks);

 printf("Topmost releasable block (keepcost): %d\n", mi.keepcost);

 }

 int

 main(int argc, char *argv[])

 {

 #define MAX_ALLOCS 2000000

 char *alloc[MAX_ALLOCS];

 int numBlocks, freeBegin, freeEnd, freeStep;

 size_t blockSize;

 if (argc < 3 || strcmp(argv[1], "--help") == 0) { Page 5/7

 fprintf(stderr, "%s num-blocks block-size [free-step "

 "[start-free [end-free]]]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 numBlocks = atoi(argv[1]);

 blockSize = atoi(argv[2]);

 freeStep = (argc > 3) ? atoi(argv[3]) : 1;

 freeBegin = (argc > 4) ? atoi(argv[4]) : 0;

 freeEnd = (argc > 5) ? atoi(argv[5]) : numBlocks;

 printf("============== Before allocating blocks ==============\n");

 display_mallinfo();

 for (int j = 0; j < numBlocks; j++) {

 if (numBlocks >= MAX_ALLOCS) {

 fprintf(stderr, "Too many allocations\n");

 exit(EXIT_FAILURE);

 }

 alloc[j] = malloc(blockSize);

 if (alloc[j] == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 }

 printf("\n============== After allocating blocks ==============\n");

 display_mallinfo();

 for (int j = freeBegin; j < freeEnd; j += freeStep)

 free(alloc[j]);

 printf("\n============== After freeing blocks ==============\n");

 display_mallinfo();

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 mmap(2), malloc(3), malloc_info(3), malloc_stats(3), malloc_trim(3),

 mallopt(3) Page 6/7

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MALLINFO(3)

Page 7/7

