
Rocky Enterprise Linux 9.2 Manual Pages on command 'lvmvdo.7'

$ man lvmvdo.7

LVMVDO(7) LVMVDO(7)

NAME

 lvmvdo ? Support for Virtual Data Optimizer in LVM

DESCRIPTION

 VDO is software that provides inline block-level deduplication, com?

 pression, and thin provisioning capabilities for primary storage.

 Deduplication is a technique for reducing the consumption of storage

 resources by eliminating multiple copies of duplicate blocks. Compres?

 sion takes the individual unique blocks and shrinks them. These re?

 duced blocks are then efficiently packed together into physical blocks.

 Thin provisioning manages the mapping from logical blocks presented by

 VDO to where the data has actually been physically stored, and also

 eliminates any blocks of all zeroes.

 With deduplication, instead of writing the same data more than once,

 VDO detects and records each duplicate block as a reference to the

 original block. VDO maintains a mapping from Logical Block Addresses

 (LBA) (used by the storage layer above VDO) to physical block addresses

 (used by the storage layer under VDO). After deduplication, multiple Page 1/9

 logical block addresses may be mapped to the same physical block ad?

 dress; these are called shared blocks and are reference-counted by the

 software.

 With compression, VDO compresses multiple blocks (or shared blocks)

 with the fast LZ4 algorithm, and bins them together where possible so

 that multiple compressed blocks fit within a 4 KB block on the underly?

 ing storage. Mapping from LBA is to a physical block address and index

 within it for the desired compressed data. All compressed blocks are

 individually reference counted for correctness.

 Block sharing and block compression are invisible to applications using

 the storage, which read and write blocks as they would if VDO were not

 present. When a shared block is overwritten, a new physical block is

 allocated for storing the new block data to ensure that other logical

 block addresses that are mapped to the shared physical block are not

 modified.

 To use VDO with lvm(8), you must install the standard VDO user-space

 tools vdoformat(8) and the currently non-standard kernel VDO module

 "kvdo".

 The "kvdo" module implements fine-grained storage virtualization, thin

 provisioning, block sharing, and compression. The "uds" module pro?

 vides memory-efficient duplicate identification. The user-space tools

 include vdostats(8) for extracting statistics from VDO volumes.

VDO TERMS

 VDODataLV

 VDO data LV

 A large hidden LV with the _vdata suffix. It is created in a VG

 used by the VDO kernel target to store all data and metadata

 blocks.

 VDOPoolLV

 VDO pool LV

 A pool for virtual VDOLV(s), which are the size of used VDO?

 DataLV.

 Only a single VDOLV is currently supported. Page 2/9

 VDOLV

 VDO LV

 Created from VDOPoolLV.

 Appears blank after creation.

VDO USAGE

 The primary methods for using VDO with lvm2:

 1. Create a VDOPoolLV and a VDOLV

 Create a VDOPoolLV that will hold VDO data, and a virtual size VDOLV

 that the user can use. If you do not specify the virtual size, then the

 VDOLV is created with the maximum size that always fits into data vol?

 ume even if no deduplication or compression can happen (i.e. it can

 hold the incompressible content of /dev/urandom). If you do not spec?

 ify the name of VDOPoolLV, it is taken from the sequence of vpool0,

 vpool1 ...

 Note: The performance of TRIM/Discard operations is slow for large vol?

 umes of VDO type. Please try to avoid sending discard requests unless

 necessary because it might take considerable amount of time to finish

 the discard operation.

 lvcreate --type vdo -n VDOLV -L DataSize -V LargeVirtualSize VG/VDOPoolLV

 lvcreate --vdo -L DataSize VG

 Example

 # lvcreate --type vdo -n vdo0 -L 10G -V 100G vg/vdopool0

 # mkfs.ext4 -E nodiscard /dev/vg/vdo0

 2. Convert an existing LV into VDOPoolLV

 Convert an already created or existing LV into a VDOPoolLV, which is a

 volume that can hold data and metadata. You will be prompted to con?

 firm such conversion because it IRREVERSIBLY DESTROYS the content of

 such volume and the volume is immediately formatted by vdoformat(8) as

 a VDO pool data volume. You can specify the virtual size of the VDOLV

 associated with this VDOPoolLV. If you do not specify the virtual

 size, it will be set to the maximum size that can keep 100% incompress?

 ible data there.

 lvconvert --type vdo-pool -n VDOLV -V VirtualSize VG/VDOPoolLV Page 3/9

 lvconvert --vdopool VG/VDOPoolLV

 Example

 # lvconvert --type vdo-pool -n vdo0 -V10G vg/ExistingLV

 3. Change the compression and deduplication of a VDOPoolLV

 Disable or enable the compression and deduplication for VDOPoolLV (the

 volume that maintains all VDO LV(s) associated with it).

 lvchange --compression y|n --deduplication y|n VG/VDOPoolLV

 Example

 # lvchange --compression n vg/vdopool0

 # lvchange --deduplication y vg/vdopool1

 4. Change the default settings used for creating a VDOPoolLV

 VDO allows to set a large variety of options. Lots of these settings

 can be specified in lvm.conf or profile settings. You can prepare a

 number of different profiles in the /etc/lvm/profile directory and just

 specify the profile file name. Check the output of lvmconfig --type

 default --withcomments for a detailed description of all individual VDO

 settings.

 Example

 # cat <<EOF > /etc/lvm/profile/vdo_create.profile

 allocation {

 vdo_use_compression=1

 vdo_use_deduplication=1

 vdo_use_metadata_hints=1

 vdo_minimum_io_size=4096

 vdo_block_map_cache_size_mb=128

 vdo_block_map_period=16380

 vdo_check_point_frequency=0

 vdo_use_sparse_index=0

 vdo_index_memory_size_mb=256

 vdo_slab_size_mb=2048

 vdo_ack_threads=1

 vdo_bio_threads=1

 vdo_bio_rotation=64 Page 4/9

 vdo_cpu_threads=2

 vdo_hash_zone_threads=1

 vdo_logical_threads=1

 vdo_physical_threads=1

 vdo_write_policy="auto"

 vdo_max_discard=1

 }

 EOF

 # lvcreate --vdo -L10G --metadataprofile vdo_create vg/vdopool0

 # lvcreate --vdo -L10G --config 'allocation/vdo_cpu_threads=4' vg/vdopool1

 5. Set or change VDO settings with option --vdosettings

 Use the form 'option=value' or 'option1=value option2=value', or repeat

 --vdosettings for each option being set. Options are listed in the Ex?

 ample section above, for the full description see lvm.conf(5). Options

 can omit 'vdo_' and 'vdo_use_' prefixes and all its underscores. So

 i.e. vdo_use_metadata_hints=1 and metadatahints=1 are equivalent.

 To change the option for an already existing VDOPoolLV use lvchange(8)

 command. However not all option can be changed. Only compression and

 deduplication options can be also changed for an active VDO LV. Lowest

 priority options are specified with configuration file, then with

 --vdosettings and highest are expliction option --compression and

 --deduplication.

 Example

 # lvcreate --vdo -L10G --vdosettings 'ack_threads=1 hash_zone_threads=2' vg/vdopool0

 # lvchange --vdosettings 'bio_threads=2 deduplication=1' vg/vdopool0

 6. Checking the usage of VDOPoolLV

 To quickly check how much data on a VDOPoolLV is already consumed, use

 lvs(8). The Data% field reports how much data is occupied in the con?

 tent of the virtual data for the VDOLV and how much space is already

 consumed with all the data and metadata blocks in the VDOPoolLV. For a

 detailed description, use the vdostats(8) command.

 Note: vdostats(8) currently understands only /dev/mapper device names.

 Example Page 5/9

 # lvcreate --type vdo -L10G -V20G -n vdo0 vg/vdopool0

 # mkfs.ext4 -E nodiscard /dev/vg/vdo0

 # lvs -a vg

 LV VG Attr LSize Pool Origin Data%

 vdo0 vg vwi-a-v--- 20.00g vdopool0 0.01

 vdopool0 vg dwi-ao---- 10.00g 30.16

 [vdopool0_vdata] vg Dwi-ao---- 10.00g

 # vdostats --all /dev/mapper/vg-vdopool0-vpool

 /dev/mapper/vg-vdopool0 :

 version : 30

 release version : 133524

 data blocks used : 79

 ...

 7. Extending the VDOPoolLV size

 You can add more space to hold VDO data and metadata by extending the

 VDODataLV using the commands lvresize(8) and lvextend(8). The exten?

 sion needs to add at least one new VDO slab. You can configure the slab

 size with the allocation/vdo_slab_size_mb setting.

 You can also enable automatic size extension of a monitored VDOPoolLV

 with the activation/vdo_pool_autoextend_percent and activation/

 vdo_pool_autoextend_threshold settings.

 Note: You cannot reduce the size of a VDOPoolLV.

 lvextend -L+AddingSize VG/VDOPoolLV

 Example

 # lvextend -L+50G vg/vdopool0

 # lvresize -L300G vg/vdopool1

 8. Extending or reducing the VDOLV size

 You can extend or reduce a virtual VDO LV as a standard LV with the

 lvresize(8), lvextend(8), and lvreduce(8) commands.

 Note: The reduction needs to process TRIM for reduced disk area to un?

 map used data blocks from the VDOPoolLV, which might take a long time.

 lvextend -L+AddingSize VG/VDOLV

 lvreduce -L-ReducingSize VG/VDOLV Page 6/9

 Example

 # lvextend -L+50G vg/vdo0

 # lvreduce -L-50G vg/vdo1

 # lvresize -L200G vg/vdo2

 9. Component activation of a VDODataLV

 You can activate a VDODataLV separately as a component LV for examina?

 tion purposes. The activation of the VDODataLV activates the data LV in

 read-only mode, and the data LV cannot be modified. If the VDODataLV

 is active as a component, any upper LV using this volume CANNOT be ac?

 tivated. You have to deactivate the VDODataLV first to continue to use

 the VDOPoolLV.

 Example

 # lvchange -ay vg/vpool0_vdata

 # lvchange -an vg/vpool0_vdata

VDO TOPICS

 1. Stacking VDO

 You can convert or stack a VDOPooLV with these currently supported vol?

 ume types: linear, stripe, raid, and cache with cachepool.

 2. VDOPoolLV on top of raid

 Using a raid type LV for a VDODataLV.

 Example

 # lvcreate --type raid1 -L 5G -n vdopool vg

 # lvconvert --type vdo-pool -V 10G vg/vdopool

 3. Caching a VDOPoolLV

 VDOPoolLV (accepts also VDODataLV volume name) caching provides a mech?

 anism to accelerate reads and writes of already compressed and dedupli?

 cated data blocks together with VDO metadata.

 Example

 # lvcreate --type vdo -L 5G -V 10G -n vdo1 vg/vdopool

 # lvcreate --type cache-pool -L 1G -n cachepool vg

 # lvconvert --cache --cachepool vg/cachepool vg/vdopool

 # lvconvert --uncache vg/vdopool

 4. Caching a VDOLV Page 7/9

 VDO LV cache allow you to 'cache' a device for better performance be?

 fore it hits the processing of the VDO Pool LV layer.

 Example

 # lvcreate --type vdo -L 5G -V 10G -n vdo1 vg/vdopool

 # lvcreate --type cache-pool -L 1G -n cachepool vg

 # lvconvert --cache --cachepool vg/cachepool vg/vdo1

 # lvconvert --uncache vg/vdo1

 5. Usage of Discard/TRIM with a VDOLV

 You can discard data on a VDO LV and reduce used blocks on a VDOPoolLV.

 However, the current performance of discard operations is still not op?

 timal and takes a considerable amount of time and CPU. Unless you re?

 ally need it, you should avoid using discard.

 When a block device is going to be rewritten, its blocks will be auto?

 matically reused for new data. Discard is useful in situations when

 user knows that the given portion of a VDO LV is not going to be used

 and the discarded space can be used for block provisioning in other re?

 gions of the VDO LV. For the same reason, you should avoid using mkfs

 with discard for a freshly created VDO LV to save a lot of time that

 this operation would take otherwise as device is already expected to be

 empty.

 6. Memory usage

 The VDO target requires 38 MiB of RAM and several variable amounts:

 ? 1.15 MiB of RAM for each 1 MiB of configured block map cache size.

 The block map cache requires a minimum of 150 MiB RAM.

 ? 1.6 MiB of RAM for each 1 TiB of logical space.

 ? 268 MiB of RAM for each 1 TiB of physical storage managed by the vol?

 ume.

 UDS requires a minimum of 250 MiB of RAM, which is also the default

 amount that deduplication uses.

 The memory required for the UDS index is determined by the index type

 and the required size of the deduplication window and is controlled by

 the allocation/vdo_use_sparse_index setting.

 With enabled UDS sparse indexing, it relies on the temporal locality of Page 8/9

 data and attempts to retain only the most relevant index entries in

 memory and can maintain a deduplication window that is ten times larger

 than with dense while using the same amount of memory.

 Although the sparse index provides the greatest coverage, the dense in?

 dex provides more deduplication advice. For most workloads, given the

 same amount of memory, the difference in deduplication rates between

 dense and sparse indexes is negligible.

 A dense index with 1 GiB of RAM maintains a 1 TiB deduplication window,

 while a sparse index with 1 GiB of RAM maintains a 10 TiB deduplication

 window. In general, 1 GiB is sufficient for 4 TiB of physical space

 with a dense index and 40 TiB with a sparse index.

 7. Storage space requirements

 You can configure a VDOPoolLV to use up to 256 TiB of physical storage.

 Only a certain part of the physical storage is usable to store data.

 This section provides the calculations to determine the usable size of

 a VDO-managed volume.

 The VDO target requires storage for two types of VDO metadata and for

 the UDS index:

 ? The first type of VDO metadata uses approximately 1 MiB for each

 4 GiB of physical storage plus an additional 1 MiB per slab.

 ? The second type of VDO metadata consumes approximately 1.25 MiB for

 each 1 GiB of logical storage, rounded up to the nearest slab.

 ? The amount of storage required for the UDS index depends on the type

 of index and the amount of RAM allocated to the index. For each 1 GiB

 of RAM, a dense UDS index uses 17 GiB of storage and a sparse UDS in?

 dex will use 170 GiB of storage.

SEE ALSO

 lvm(8), lvm.conf(5), lvmconfig(8), lvcreate(8), lvconvert(8),

 lvchange(8), lvextend(8), lvreduce(8), lvresize(8), lvremove(8),

 lvs(8),

 vdo(8), vdoformat(8), vdostats(8),

 mkfs(8)

Red Hat, Inc LVM TOOLS 2.03.17(2) (2022-11-10) LVMVDO(7) Page 9/9

