
Rocky Enterprise Linux 9.2 Manual Pages on command 'luksmeta.8'

$ man luksmeta.8

LUKSMETA(8) LUKSMETA(8)

NAME

 luksmeta - Utility for storing metadata in a LUKSv1 header

SYNOPSIS

 luksmeta test -d DEVICE

 luksmeta nuke -d DEVICE [-f]

 luksmeta init -d DEVICE [-f] [-n]

 luksmeta show -d DEVICE [-s SLOT]

 luksmeta save -d DEVICE [-s SLOT] -u UUID < DATA

 luksmeta load -d DEVICE -s SLOT [-u UUID] > DATA

 luksmeta wipe -d DEVICE -s SLOT [-u UUID] [-f]

OVERVIEW

 The luksmeta utility enables an administrator to store metadata in the

 gap between the end of the LUKSv1 header and the start of the encrypted

 data. This is useful for storing data that is available before the

 volume is unlocked, usually for use during the volume unlock process.

 The metadata is stored in a series of UUID-typed slots, allowing

 multiple blocks of metadata. Although the luksmeta slots are inspired Page 1/6

 by the LUKS slots, they are functionally independent and share only a

 casual relationship. Slots merely provide a hint that a given chunk of

 metadata is associated with a specific LUKSv1 password (in a slot with

 the same number). However, luksmeta itself is indifferent to the

 relationship between a LUKSv1 slot and the correspondly numbered

 luksmeta slot, with one exception (detailed below).

 After a LUKSv1 volume is initialized using cryptsetup(8), it must also

 be initialized for metadata storage by luksmeta init. Once this is

 complete, the device is ready to store medata.

 Data can be written to a slot using luksmeta save or read from a slot

 using luksmeta load. You can also erase the data in an existing slot

 using luksmeta wipe or query the slots using luksmeta show.

UUID GENERATION

 It is often presumed that saving metadata to a slot requires a specific

 UUID or that there is an official registry of UUID types. This is

 incorrect.

 UUID stands for Universally Unique IDentifier. UUIDs are a

 standardized, widely-used data type used for identification without a

 central registry. For the relevant standards, see ISO 9834-8:2005 and

 RFC 4122.

 UUIDs are large enough that collision is practically impossible. So if

 your application wants to store data in a luksmeta slot, just generate

 your own UUID and use it consistently to refer to your type of data. If

 you have multiple types of data, feel free to generate multiple UUIDs.

 The easiest way to generate a UUID is to use uuidgen(1). However, any

 compliant UUID generator will suffice.

INITIALIZATION

 Before reading or writing metadata, the LUKSv1 block device must be

 initialized for metadata storage. Three commands help with this

 process: luksmeta test, luksmeta nuke and luksmeta init.

 The luksmeta test command simply checks an existing block device to see

 if it is initialized for metadata storage. This command does not

 provide any output, so be sure to check its return code (see below). Page 2/6

 The luksmeta nuke command will zero (erase) the entire LUKSv1 header

 gap. Since this operation is destructive, user confirmation will be

 required before clearing the gap unless the -f option is supplied.

 The luksmeta init command initializes the LUKSv1 block device for

 metadata storage. This process will wipe out any data in the LUKSv1

 header gap. For this reason, this command will require user

 confirmation before any data is written unless the -f option is

 supplied. Note that this command succeeds without any modification if

 the device is already initialized. If you would like to force the

 creation of clean initialization state, you can specify the -n option

 to nuke the LUKSv1 header gap before initialization (but after user

 confirmation).

METADATA STATE

 The luksmeta show command displays the current state of slots on the

 LUKSv1 block device. If no slot is specified, it prints a table

 consisting of the slot number, the corresponding LUKSv1 slot state and

 the UUID of the data stored in the luksmeta slot (or "empty" if no data

 is stored). If a slot is specified, this command simply prints out the

 UUID of the data in the slot. If the slot does not contain data, it

 prints nothing.

MANAGING METADATA

 Managing the metadata in the slots is performed with three commands:

 luksmeta save, luksmeta load and luksmeta wipe. These commands write

 metadata to a slot, read metadata from a slot and erase metadata in a

 slot, respectively.

 The luksmeta save command reads metadata on standard input and writes

 it to the specified slot using the specified UUID. If no slot is

 specified, luksmeta will search for the first slot number for which the

 LUKSv1 slot is inactive and the luksmeta slot is empty. This represents

 the only official correlation between LUKSv1 slots and luksmeta slots.

 In this case, the metadata is written to the first applicable slot

 using the specified UUID and the slot number is printed to standard

 output. In either case, this command will never overwrite existing Page 3/6

 data. To replace data in a slot you will need to execute luksmeta wipe

 before luksmeta save.

 The luksmeta load command reads data from the specified slot and writes

 it to standard output. If a UUID is specified, the command will verify

 that the UUID associated with the metadata in the slot matches the

 specified UUID. This type check helps to ensure that you always receive

 the type of data you are expecting as output. If the UUIDs do not

 match, the command will fail.

 The luksmeta wipe command erases the data from the given slot. If a

 UUID is specified, the command will verify that the UUID associated

 with the metadata in the slot matches the specified UUID. This type

 check helps to ensure that you only erase the data you intended to

 erase. Because this is a destructive operation, this command will

 require user confirmation before any data is erased, unless the -f

 option is supplied. Note that this command succeeds if you attempt to

 wipe a slot that is already empty.

CAVEATS

 The amount of storage in the LUKSv1 header gap is extremely limited. It

 also varies based upon the configuration used by LUKSv1 at device

 initialization time. In some LUKSv1 configurations, there is not even

 enough space for all the metadata slots even at the smallest possible

 slot size.

 During the design of this utility, we considered it likely that users

 would want to reduce the number of usable slots in exchange for more

 storage space in the slots used. In order to provide this flexibility,

 the amount of storage available per-slot is dynamic. Put simply, slots

 are not a fixed size. This means that it is possible (and even somewhat

 likely) to encounter an error during luksmeta save indicating that

 there is insufficient space.

 This error is not a programming bug. If you encounter this error it

 likely means that either all space is being consumed by the

 already-written slots or that the metadata you are attempting to write

 simply does not fit. Page 4/6

 You can attempt to resolve this problem by calling luksmeta wipe on

 slots that are no longer in use. This will release the storage space

 for use by other slots. Note that luksmeta does not, however, currently

 perform defragmentation since the number of usable blocks is rather

 limited. You can attempt to manually get around this by extracting all

 slot data, wiping the slots and reloading them in order. However, this

 operation is potentially dangerous and should be undertaken with great

 care.

OPTIONS

 ? -d DEVICE, --device=DEVICE : The device on which to perform the

 operation.

 ? -s SLOT, --slot=SLOT : The slot number on which to perform the

 operation.

 ? -u UUID, --uuid=UUID : The UUID to associate with the operation.

 ? -f, --force : Forcibly suppress all user prompting.

RETURN VALUES

 This command uses the return values as defined by sysexit.h. The

 following are general errors whose meaning is shared by all luksmeta

 commands:

 ? EX_OK : The operation was successful.

 ? EX_OSERR : An undefined operating system error occurred.

 ? EX_USAGE : The program was called with invalid parameters.

 ? EX_IOERR : An IO error occurred when writing to the device.

 ? EX_OSFILE : The device is not initialized or is corrupted.

 ? EX_NOPERM : The user did not grant permission during confirmation.

 ? EX_NOINPUT : An error occurred while reading from standard input.

 ? EX_DATAERR : The specified UUID does not match the slot UUID.

 ? EX_CANTCREAT : There is insufficient space in LUKSv1 header.

 Additionally, luksmeta save will return EX_UNAVAILABLE when you attempt

 to save data into a slot that is already used. Likewise, luksmeta load

 will return EX_UNAVAILABLE when you attempt to read from an empty slot.

EXAMPLES

 Destroy all data (including LUKSMeta data) in the LUKSv1 header gap and Page 5/6

 initialize the gap for LUKSMeta storage:

 $ luksmeta init -n -f -d /dev/sdz

 If already initialized, do nothing. Otherwise, destroy all non-LUKSMeta

 data in the LUKSv1 header gap and initialize the gap for LUKSMeta

 storage:

 $ luksmeta init -f -d /dev/sdz

 Write some data to a slot:

 $ UUID=*uuidgen*

 $ echo $UUID

 31c25e3b-b8e2-4eaa-a427-23aa882feef2

 $ echo "Hello, World" | luksmeta save -d /dev/sdz -s 0 -u $UUID

 Read the data back:

 $ luksmeta load -d /dev/sdz -s 0 -u $UUID

 Hello, World

 Wipe the data from the slot:

 $ luksmeta wipe -d /dev/sdz -s 0 -u $UUID

 Erase all trace of LUKSMeta:

 $ luksmeta nuke -f -d /dev/sdz

AUTHOR

 Nathaniel McCallum <npmccallum@redhat.com>

SEE ALSO

 cryptsetup(8), uuidgen(1)

 08/09/2021 LUKSMETA(8)

Page 6/6

