
Rocky Enterprise Linux 9.2 Manual Pages on command 'localtime_r.3'

$ man localtime_r.3

CTIME(3) Linux Programmer's Manual CTIME(3)

NAME

 asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gm?

 time_r, localtime_r - transform date and time to broken-down time or

 ASCII

SYNOPSIS

 #include <time.h>

 char *asctime(const struct tm *tm);

 char *asctime_r(const struct tm *tm, char *buf);

 char *ctime(const time_t *timep);

 char *ctime_r(const time_t *timep, char *buf);

 struct tm *gmtime(const time_t *timep);

 struct tm *gmtime_r(const time_t *timep, struct tm *result);

 struct tm *localtime(const time_t *timep);

 struct tm *localtime_r(const time_t *timep, struct tm *result);

 time_t mktime(struct tm *tm);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 asctime_r(), ctime_r(), gmtime_r(), localtime_r(): Page 1/7

 _POSIX_C_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

 The ctime(), gmtime(), and localtime() functions all take an argument

 of data type time_t, which represents calendar time. When interpreted

 as an absolute time value, it represents the number of seconds elapsed

 since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

 The asctime() and mktime() functions both take an argument representing

 broken-down time, which is a representation separated into year, month,

 day, and so on.

 Broken-down time is stored in the structure tm, which is defined in

 <time.h> as follows:

 struct tm {

 int tm_sec; /* Seconds (0-60) */

 int tm_min; /* Minutes (0-59) */

 int tm_hour; /* Hours (0-23) */

 int tm_mday; /* Day of the month (1-31) */

 int tm_mon; /* Month (0-11) */

 int tm_year; /* Year - 1900 */

 int tm_wday; /* Day of the week (0-6, Sunday = 0) */

 int tm_yday; /* Day in the year (0-365, 1 Jan = 0) */

 int tm_isdst; /* Daylight saving time */

 };

 The members of the tm structure are:

 tm_sec The number of seconds after the minute, normally in the range

 0 to 59, but can be up to 60 to allow for leap seconds.

 tm_min The number of minutes after the hour, in the range 0 to 59.

 tm_hour The number of hours past midnight, in the range 0 to 23.

 tm_mday The day of the month, in the range 1 to 31.

 tm_mon The number of months since January, in the range 0 to 11.

 tm_year The number of years since 1900.

 tm_wday The number of days since Sunday, in the range 0 to 6.

 tm_yday The number of days since January 1, in the range 0 to 365. Page 2/7

 tm_isdst A flag that indicates whether daylight saving time is in ef?

 fect at the time described. The value is positive if day?

 light saving time is in effect, zero if it is not, and nega?

 tive if the information is not available.

 The call ctime(t) is equivalent to asctime(localtime(t)). It converts

 the calendar time t into a null-terminated string of the form

 "Wed Jun 30 21:49:08 1993\n"

 The abbreviations for the days of the week are "Sun", "Mon", "Tue",

 "Wed", "Thu", "Fri", and "Sat". The abbreviations for the months are

 "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct",

 "Nov", and "Dec". The return value points to a statically allocated

 string which might be overwritten by subsequent calls to any of the

 date and time functions. The function also sets the external variables

 tzname, timezone, and daylight (see tzset(3)) with information about

 the current timezone. The reentrant version ctime_r() does the same,

 but stores the string in a user-supplied buffer which should have room

 for at least 26 bytes. It need not set tzname, timezone, and daylight.

 The gmtime() function converts the calendar time timep to broken-down

 time representation, expressed in Coordinated Universal Time (UTC). It

 may return NULL when the year does not fit into an integer. The return

 value points to a statically allocated struct which might be overwrit?

 ten by subsequent calls to any of the date and time functions. The gm?

 time_r() function does the same, but stores the data in a user-supplied

 struct.

 The localtime() function converts the calendar time timep to broken-

 down time representation, expressed relative to the user's specified

 timezone. The function acts as if it called tzset(3) and sets the ex?

 ternal variables tzname with information about the current timezone,

 timezone with the difference between Coordinated Universal Time (UTC)

 and local standard time in seconds, and daylight to a nonzero value if

 daylight savings time rules apply during some part of the year. The

 return value points to a statically allocated struct which might be

 overwritten by subsequent calls to any of the date and time functions. Page 3/7

 The localtime_r() function does the same, but stores the data in a

 user-supplied struct. It need not set tzname, timezone, and daylight.

 The asctime() function converts the broken-down time value tm into a

 null-terminated string with the same format as ctime(). The return

 value points to a statically allocated string which might be overwrit?

 ten by subsequent calls to any of the date and time functions. The as?

 ctime_r() function does the same, but stores the string in a user-sup?

 plied buffer which should have room for at least 26 bytes.

 The mktime() function converts a broken-down time structure, expressed

 as local time, to calendar time representation. The function ignores

 the values supplied by the caller in the tm_wday and tm_yday fields.

 The value specified in the tm_isdst field informs mktime() whether or

 not daylight saving time (DST) is in effect for the time supplied in

 the tm structure: a positive value means DST is in effect; zero means

 that DST is not in effect; and a negative value means that mktime()

 should (use timezone information and system databases to) attempt to

 determine whether DST is in effect at the specified time.

 The mktime() function modifies the fields of the tm structure as fol?

 lows: tm_wday and tm_yday are set to values determined from the con?

 tents of the other fields; if structure members are outside their valid

 interval, they will be normalized (so that, for example, 40 October is

 changed into 9 November); tm_isdst is set (regardless of its initial

 value) to a positive value or to 0, respectively, to indicate whether

 DST is or is not in effect at the specified time. Calling mktime()

 also sets the external variable tzname with information about the cur?

 rent timezone.

 If the specified broken-down time cannot be represented as calendar

 time (seconds since the Epoch), mktime() returns (time_t) -1 and does

 not alter the members of the broken-down time structure.

RETURN VALUE

 On success, gmtime() and localtime() return a pointer to a struct tm.

 On success, gmtime_r() and localtime_r() return the address of the

 structure pointed to by result. Page 4/7

 On success, asctime() and ctime() return a pointer to a string.

 On success, asctime_r() and ctime_r() return a pointer to the string

 pointed to by buf.

 On success, mktime() returns the calendar time (seconds since the

 Epoch), expressed as a value of type time_t.

 On error, mktime() returns the value (time_t) -1. The remaining func?

 tions return NULL on error. On error, errno is set to indicate the

 cause of the error.

ERRORS

 EOVERFLOW

 The result cannot be represented.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?asctime() ? Thread safety ? MT-Unsafe race:asctime locale ?

 ???

 ?asctime_r() ? Thread safety ? MT-Safe locale ?

 ???

 ?ctime() ? Thread safety ? MT-Unsafe race:tmbuf ?

 ? ? ? race:asctime env locale ?

 ???

 ?ctime_r(), gm? ? Thread safety ? MT-Safe env locale ?

 ?time_r(), lo? ? ? ?

 ?caltime_r(), ? ? ?

 ?mktime() ? ? ?

 ???

 ?gmtime(), lo? ? Thread safety ? MT-Unsafe race:tmbuf env locale ?

 ?caltime() ? ? ?

 ???

CONFORMING TO Page 5/7

 POSIX.1-2001. C89 and C99 specify asctime(), ctime(), gmtime(), local?

 time(), and mktime(). POSIX.1-2008 marks asctime(), asctime_r(),

 ctime(), and ctime_r() as obsolete, recommending the use of strftime(3)

 instead.

NOTES

 The four functions asctime(), ctime(), gmtime(), and localtime() return

 a pointer to static data and hence are not thread-safe. The thread-

 safe versions, asctime_r(), ctime_r(), gmtime_r(), and localtime_r(),

 are specified by SUSv2.

 POSIX.1-2001 says: "The asctime(), ctime(), gmtime(), and localtime()

 functions shall return values in one of two static objects: a broken-

 down time structure and an array of type char. Execution of any of the

 functions may overwrite the information returned in either of these ob?

 jects by any of the other functions." This can occur in the glibc im?

 plementation.

 In many implementations, including glibc, a 0 in tm_mday is interpreted

 as meaning the last day of the preceding month.

 The glibc version of struct tm has additional fields

 const char *tm_zone; /* Timezone abbreviation */

 defined when _BSD_SOURCE was set before including <time.h>. This is a

 BSD extension, present in 4.3BSD-Reno.

 According to POSIX.1-2001, localtime() is required to behave as though

 tzset(3) was called, while localtime_r() does not have this require?

 ment. For portable code, tzset(3) should be called before local?

 time_r().

SEE ALSO

 date(1), gettimeofday(2), time(2), utime(2), clock(3), difftime(3),

 strftime(3), strptime(3), timegm(3), tzset(3), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/. Page 6/7

 2020-12-21 CTIME(3)

Page 7/7

